Suppr超能文献

CD44 N-聚糖上的末端唾液酸可通过与精氨酸侧链形成竞争性分子内接触来阻断透明质酸结合。

Terminal sialic acids on CD44 N-glycans can block hyaluronan binding by forming competing intramolecular contacts with arginine sidechains.

作者信息

Faller Christina E, Guvench Olgun

机构信息

Department of Pharmaceutical Sciences, University of New England College of Pharmacy, ortland, Maine, 04103.

出版信息

Proteins. 2014 Nov;82(11):3079-89. doi: 10.1002/prot.24668. Epub 2014 Sep 29.

Abstract

Specific sugar residues and their linkages form the basis of molecular recognition for interactions of glycoproteins with other biomolecules. Seemingly small changes, like the addition of a single monosaccharide in the covalently attached glycan component of glycoproteins, can greatly affect these interactions. For instance, the sialic acid capping of glycans affects protein-ligand binding involved in cell-cell and cell-matrix interactions. CD44 is a single-pass transmembrane glycoprotein whose binding with its carbohydrate ligand hyaluronan (HA), an extracellular matrix component, mediates processes such as leukocyte homing, cell adhesion, and tumor metastasis. This binding is highly regulated by glycosylation of the N-terminal extracellular hyaluronan-binding domain (HABD); specifically, sialic acid capped N-glycans of HABD inhibit ligand binding. However, the molecular mechanism behind this sialic acid mediated regulation has remained unknown. Two of the five N-glycosyation sites of HABD have been previously identified as having the greatest inhibitory effect on HA binding, but only if the glycans contain terminal sialic acid residues. These two sites, Asn25 and Asn120, were chosen for in silico glycosylation in this study. Here, from extensive standard molecular dynamics simulations and biased simulations, we propose a molecular mechanism for this behavior based on spontaneously-formed charge-paired hydrogen bonding interactions between the negatively-charged sialic acid residues and positively-charged Arg sidechains known to be critically important for binding to HA, which itself is negatively charged. Such intramolecular hydrogen bonds would preclude associations critical to hyaluronan binding. This observation suggests how CD44 and related glycoprotein binding is regulated by sialylation as cellular environments fluctuate.

摘要

特定的糖残基及其连接方式构成了糖蛋白与其他生物分子相互作用的分子识别基础。看似微小的变化,比如在糖蛋白共价连接的聚糖成分中添加单个单糖,都可能极大地影响这些相互作用。例如,聚糖的唾液酸封端会影响细胞 - 细胞和细胞 - 基质相互作用中涉及的蛋白质 - 配体结合。CD44是一种单次跨膜糖蛋白,它与其碳水化合物配体透明质酸(HA,一种细胞外基质成分)的结合介导了白细胞归巢、细胞黏附及肿瘤转移等过程。这种结合受到N端细胞外透明质酸结合结构域(HABD)糖基化的高度调控;具体而言,HABD的唾液酸封端的N - 聚糖会抑制配体结合。然而,这种唾液酸介导调控背后的分子机制仍不清楚。HABD的五个N - 糖基化位点中的两个先前已被确定对HA结合具有最大抑制作用,但前提是聚糖含有末端唾液酸残基。在本研究中,选择了这两个位点Asn25和Asn120进行计算机糖基化。在此,通过广泛的标准分子动力学模拟和有偏模拟,我们基于带负电荷的唾液酸残基与带正电荷的Arg侧链之间自发形成的电荷配对氢键相互作用,提出了这种行为的分子机制,已知后者对于与带负电荷的HA结合至关重要。这种分子内氢键会阻止对透明质酸结合至关重要的缔合。这一观察结果表明,随着细胞环境的波动,CD44及相关糖蛋白的结合是如何通过唾液酸化进行调控的。

相似文献

2
Revealing the Mechanisms of Protein Disorder and N-Glycosylation in CD44-Hyaluronan Binding Using Molecular Simulation.
Front Immunol. 2015 Jun 16;6:305. doi: 10.3389/fimmu.2015.00305. eCollection 2015.
4
Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction.
Nat Struct Mol Biol. 2007 Mar;14(3):234-9. doi: 10.1038/nsmb1201. Epub 2007 Feb 11.
6
Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44.
Mol Cell. 2004 Feb 27;13(4):483-96. doi: 10.1016/s1097-2765(04)00080-2.
7
Atomistic fingerprint of hyaluronan-CD44 binding.
PLoS Comput Biol. 2017 Jul 17;13(7):e1005663. doi: 10.1371/journal.pcbi.1005663. eCollection 2017 Jul.
8
O-glycan truncation enhances cancer-related functions of CD44 in gastric cancer.
FEBS Lett. 2019 Jul;593(13):1675-1689. doi: 10.1002/1873-3468.13432. Epub 2019 May 27.
10
Hyaluronan recognition mode of CD44 revealed by cross-saturation and chemical shift perturbation experiments.
J Biol Chem. 2003 Oct 31;278(44):43550-5. doi: 10.1074/jbc.M308199200. Epub 2003 Aug 19.

引用本文的文献

2
The role of N-glycosylation modification in the pathogenesis of liver cancer.
Cell Death Dis. 2023 Mar 29;14(3):222. doi: 10.1038/s41419-023-05733-z.
4
Sialidase Inhibitors with Different Mechanisms.
J Med Chem. 2022 Oct 27;65(20):13574-13593. doi: 10.1021/acs.jmedchem.2c01258. Epub 2022 Oct 17.
5
Hypoxia Controls the Glycome Signature and Galectin-8-Ligand Axis to Promote Protumorigenic Properties of Metastatic Melanoma.
J Invest Dermatol. 2023 Mar;143(3):456-469.e8. doi: 10.1016/j.jid.2022.07.033. Epub 2022 Sep 27.
6
CD44 Glycosylation as a Therapeutic Target in Oncology.
Front Oncol. 2022 Jul 21;12:883831. doi: 10.3389/fonc.2022.883831. eCollection 2022.
7
Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond.
Front Immunol. 2022 Apr 11;13:883079. doi: 10.3389/fimmu.2022.883079. eCollection 2022.
8
O-linked α2,3 sialylation defines stem cell populations in breast cancer.
Sci Adv. 2022 Jan 7;8(1):eabj9513. doi: 10.1126/sciadv.abj9513.
9
The Association Between Follicular Fluid Sialic Acid Levels, Oocyte Quality, and Pregnancy Rates.
Reprod Sci. 2022 Feb;29(2):633-638. doi: 10.1007/s43032-021-00688-y. Epub 2021 Jul 15.
10
Molecular Dynamics Simulation Study on Allosteric Regulation of CD44-Hyaluronan Binding as a Force Sensing Mechanism.
ACS Omega. 2021 Mar 16;6(12):8045-8055. doi: 10.1021/acsomega.0c05502. eCollection 2021 Mar 30.

本文引用的文献

1
Exploring Multidimensional Free Energy Landscapes Using Time-Dependent Biases on Collective Variables.
J Chem Theory Comput. 2010 Jan 12;6(1):35-47. doi: 10.1021/ct9004432. Epub 2009 Dec 3.
2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
CD44 receptor unfolding enhances binding by freeing basic amino acids to contact carbohydrate ligand.
Biophys J. 2013 Sep 3;105(5):1217-26. doi: 10.1016/j.bpj.2013.07.041.
4
Chondroitin Sulfate in Solution: Effects of Mono- and Divalent Salts.
Macromolecules. 2012 Mar 27;45(6):2882-2890. doi: 10.1021/ma202693s.
5
Biosynthesis and function of chondroitin sulfate.
Biochim Biophys Acta. 2013 Oct;1830(10):4719-33. doi: 10.1016/j.bbagen.2013.06.006. Epub 2013 Jun 14.
6
Restricted N-glycan conformational space in the PDB and its implication in glycan structure modeling.
PLoS Comput Biol. 2013;9(3):e1002946. doi: 10.1371/journal.pcbi.1002946. Epub 2013 Mar 14.
8
The "sweet" side of a long pentraxin: how glycosylation affects PTX3 functions in innate immunity and inflammation.
Front Immunol. 2013 Jan 7;3:407. doi: 10.3389/fimmu.2012.00407. eCollection 2012.
9
Glycan fragment database: a database of PDB-based glycan 3D structures.
Nucleic Acids Res. 2013 Jan;41(Database issue):D470-4. doi: 10.1093/nar/gks987. Epub 2012 Oct 26.
10
Molecular insight into substrate recognition by human cytosolic sialidase NEU2.
Proteins. 2012 Apr;80(4):1123-32. doi: 10.1002/prot.24013. Epub 2012 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验