Tharsika T, Haseeb A S M A, Akbar Sheikh A, Sabri Mohd Faizul Mohd, Hoong Wong Yew
Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
Center for Industrial Sensors and Measurements (CISM), Department of Materials Science and Engineering, Ohio State University, 2041 College Road, Columbus, OH 43210, USA.
Sensors (Basel). 2014 Aug 11;14(8):14586-600. doi: 10.3390/s140814586.
An inexpensive single-step carbon-assisted thermal evaporation method for the growth of SnO2-core/ZnO-shell nanostructures is described, and the ethanol sensing properties are presented. The structure and phases of the grown nanostructures are investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. XRD analysis indicates that the core-shell nanostructures have good crystallinity. At a lower growth duration of 15 min, only SnO2 nanowires with a rectangular cross-section are observed, while the ZnO shell is observed when the growth time is increased to 30 min. Core-shell hierarchical nanostructures are present for a growth time exceeding 60 min. The growth mechanism for SnO2-core/ZnO-shell nanowires and hierarchical nanostructures are also discussed. The sensitivity of the synthesized SnO2-core/ZnO-shell nanostructures towards ethanol sensing is investigated. Results show that the SnO2-core/ZnO-shell nanostructures deposited at 90 min exhibit enhanced sensitivity to ethanol. The sensitivity of SnO2-core/ZnO-shell nanostructures towards 20 ppm ethanol gas at 400 °C is about ~5-times that of SnO2 nanowires. This improvement in ethanol gas response is attributed to high active sensing sites and the synergistic effect of the encapsulation of SnO2 by ZnO nanostructures.
本文描述了一种用于生长SnO₂核/ZnO壳纳米结构的廉价单步碳辅助热蒸发方法,并展示了其乙醇传感特性。通过场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)和X射线衍射(XRD)技术研究了生长的纳米结构的结构和相。XRD分析表明核壳纳米结构具有良好的结晶性。在较低的15分钟生长时间下,仅观察到具有矩形横截面的SnO₂纳米线,而当生长时间增加到30分钟时观察到ZnO壳。生长时间超过60分钟时存在核壳分级纳米结构。还讨论了SnO₂核/ZnO壳纳米线和分级纳米结构的生长机制。研究了合成的SnO₂核/ZnO壳纳米结构对乙醇传感的灵敏度。结果表明,在90分钟沉积的SnO₂核/ZnO壳纳米结构对乙醇表现出增强的灵敏度。SnO₂核/ZnO壳纳米结构在400℃下对20 ppm乙醇气体的灵敏度约为SnO₂纳米线的5倍。乙醇气体响应的这种改善归因于高活性传感位点以及ZnO纳米结构对SnO₂的封装的协同效应。