Hemmi Hikaru
National Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12, Kannondai, Tsukuba, 305-8642, Ibaraki, Japan,
Methods Mol Biol. 2014;1200:501-9. doi: 10.1007/978-1-4939-1292-6_41.
One of the most commonly used ligand-based NMR methods for detecting ligand binding is saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. The STD NMR method is an invaluable technique for assessing carbohydrate-lectin interactions in solution, because STD NMR can be used to detect weak ligand binding (Kd ca. 10(-3)-10(-8) M). STD NMR spectra identify the binding epitope of a carbohydrate ligand when bound to lectin. Further, the STD NMR method uses 1H-detected NMR spectra of only the carbohydrate, and so only small quantities of non-labeled lectin are required. In this chapter, I describe a protocol for the STD NMR method, including the experimental procedures used to acquire, process, and analyze STD NMR data, using STD NMR studies for methyl-β-D-galactopyranoside (β-Me-Gal) binding to the C-terminal domain of an R-type lectin from earthworm (EW29Ch) as an example.
用于检测配体结合的最常用的基于配体的核磁共振方法之一是饱和转移差异(STD)核磁共振光谱法。STD核磁共振方法是评估溶液中碳水化合物与凝集素相互作用的一项极有价值的技术,因为STD核磁共振可用于检测弱配体结合(解离常数Kd约为10⁻³ - 10⁻⁸ M)。当碳水化合物配体与凝集素结合时,STD核磁共振光谱可识别其结合表位。此外,STD核磁共振方法仅使用碳水化合物的¹H检测核磁共振光谱,因此仅需要少量未标记的凝集素。在本章中,我将描述STD核磁共振方法的实验方案,包括用于获取、处理和分析STD核磁共振数据的实验步骤,并以甲基-β-D-吡喃半乳糖苷(β-Me-Gal)与蚯蚓R型凝集素(EW29Ch)的C末端结构域结合的STD核磁共振研究为例进行说明。