Téllez Noèlia, Montanya Eduard
CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain CIBER of Diabetes and Metabolic DiseasesCIBERDEM, Barcelona, SpainBellvitge Biomedical Research InstituteIDIBELL, L'Hospitalet de Llobregat, Barcelona, SpainEndocrine UnitHospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, SpainDepartment of Clinical SciencesUniversity of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
J Endocrinol. 2014 Oct;223(1):67-78. doi: 10.1530/JOE-14-0222. Epub 2014 Aug 13.
Induction of β-cell mass regeneration is a potentially curative treatment for diabetes. We have recently found that long-term gastrin treatment results in improved metabolic control and β-cell mass expansion in 95% pancreatectomised (Px) rats. In this study, we investigated the underlying mechanisms of gastrin-induced β-cell mass expansion after Px. After 90%-Px, rats were treated with gastrin (Px+G) or vehicle (Px+V), pancreatic remnants were harvested on days 1, 3, 5, 7, and 14 and used for gene expression, protein immunolocalisation and morphometric analyses. Gastrin- and vehicle-treated Px rats showed similar blood glucose levels throughout the study. Initially, after Px, focal areas of regeneration, showing mesenchymal cells surrounding ductal structures that expressed the cholecystokinin B receptor, were identified. These focal areas of regeneration were similar in size and cell composition in the Px+G and Px+V groups. However, in the Px+G group, the ductal structures showed lower levels of keratin 20 and β-catenin (indicative of duct dedifferentiation) and higher levels of expression of neurogenin 3 and NKX6-1 (indicative of endocrine progenitor phenotype), as compared with Px+V rats. In Px+G rats, β-cell mass and the number of scattered β-cells were significantly increased compared with Px+V rats, whereas β-cell replication and apoptosis were similar in the two groups. These results indicate that gastrin treatment-enhanced dedifferentiation and reprogramming of regenerative ductal cells in Px rats, increased β-cell neogenesis and fostered β-cell mass expansion.
诱导β细胞团再生是一种潜在的糖尿病治愈性疗法。我们最近发现,长期给予胃泌素治疗可改善95%胰腺切除(Px)大鼠的代谢控制并使β细胞团扩大。在本研究中,我们调查了Px后胃泌素诱导β细胞团扩大的潜在机制。90%胰腺切除后,大鼠接受胃泌素(Px+G)或赋形剂(Px+V)治疗,在第1、3、5、7和14天采集胰腺残余组织,用于基因表达、蛋白质免疫定位和形态计量分析。在整个研究过程中,接受胃泌素和赋形剂治疗的Px大鼠血糖水平相似。最初,Px后可识别出再生的局灶区域,这些区域显示表达胆囊收缩素B受体的导管结构周围有间充质细胞。Px+G组和Px+V组的这些再生局灶区域在大小和细胞组成上相似。然而,与Px+V大鼠相比,在Px+G组中,导管结构显示角蛋白20和β-连环蛋白水平较低(表明导管去分化),神经生成素3和NKX6-1表达水平较高(表明内分泌祖细胞表型)。与Px+V大鼠相比,Px+G大鼠的β细胞团和散在β细胞数量显著增加,而两组的β细胞复制和凋亡相似。这些结果表明,胃泌素治疗增强了Px大鼠再生导管细胞的去分化和重编程,增加了β细胞新生并促进了β细胞团扩大。