IEEE Trans Image Process. 2014 Aug;23(8):3711-25. doi: 10.1109/TIP.2014.2327813.
We propose a randomized version of the nonlocal means (NLM) algorithm for large-scale image filtering. The new algorithm, called Monte Carlo nonlocal means (MCNLM), speeds up the classical NLM by computing a small subset of image patch distances, which are randomly selected according to a designed sampling pattern. We make two contributions. First, we analyze the performance of the MCNLM algorithm and show that, for large images or large external image databases, the random outcomes of MCNLM are tightly concentrated around the deterministic full NLM result. In particular, our error probability bounds show that, at any given sampling ratio, the probability for MCNLM to have a large deviation from the original NLM solution decays exponentially as the size of the image or database grows. Second, we derive explicit formulas for optimal sampling patterns that minimize the error probability bound by exploiting partial knowledge of the pairwise similarity weights. Numerical experiments show that MCNLM is competitive with other state-of-the-art fast NLM algorithms for single-image denoising. When applied to denoising images using an external database containing ten billion patches, MCNLM returns a randomized solution that is within 0.2 dB of the full NLM solution while reducing the runtime by three orders of magnitude.
我们提出了一种用于大规模图像滤波的非局部均值(NLM)算法的随机版本。新算法称为蒙特卡罗非局部均值(MCNLM),通过计算根据设计的采样模式随机选择的一小部分图像补丁距离来加速经典的 NLM。我们做出了两个贡献。首先,我们分析了 MCNLM 算法的性能,并表明,对于大图像或大型外部图像数据库,MCNLM 的随机结果紧密集中在确定性全 NLM 结果周围。特别是,我们的误差概率界表明,在任何给定的采样比下,MCNLM 与原始 NLM 解决方案有较大偏差的概率随着图像或数据库大小的增长呈指数衰减。其次,我们推导出了最优采样模式的显式公式,通过利用对成对相似性权重的部分了解来最小化误差概率界。数值实验表明,MCNLM 在单图像去噪方面与其他最先进的快速 NLM 算法具有竞争力。当应用于使用包含十亿个补丁的外部数据库进行去噪的图像时,MCNLM 返回的随机解决方案与全 NLM 解决方案相差 0.2dB,同时将运行时间减少了三个数量级。