Suppr超能文献

通过总变分最小化去噪受激拉曼光谱图像

Denoising Stimulated Raman Spectroscopic Images by Total Variation Minimization.

作者信息

Liao Chien-Sheng, Choi Joon Hee, Zhang Delong, Chan Stanley H, Cheng Ji-Xin

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

J Phys Chem C Nanomater Interfaces. 2015 Aug 20;119(33):19397-19403. doi: 10.1021/acs.jpcc.5b06980. Epub 2015 Jul 29.

Abstract

High-speed coherent Raman scattering imaging is opening a new avenue to unveiling the cellular machinery by visualizing the spatio-temporal dynamics of target molecules or intracellular organelles. By extracting signals from the laser at MHz modulation frequency, current stimulated Raman scattering (SRS) microscopy has reached shot noise limited detection sensitivity. The laser-based local oscillator in SRS microscopy not only generates high levels of signal, but also delivers a large shot noise which degrades image quality and spectral fidelity. Here, we demonstrate a denoising algorithm that removes the noise in both spatial and spectral domains by total variation minimization. The signal-to-noise ratio of SRS spectroscopic images was improved by up to 57 times for diluted dimethyl sulfoxide solutions and by 15 times for biological tissues. Weak Raman peaks of target molecules originally buried in the noise were unraveled. Coupling the denoising algorithm with multivariate curve resolution allowed discrimination of fat stores from protein-rich organelles in . Together, our method significantly improved detection sensitivity without frame averaging, which can be useful for spectroscopic imaging.

摘要

高速相干拉曼散射成像通过可视化目标分子或细胞内细胞器的时空动态,为揭示细胞机制开辟了一条新途径。通过在兆赫兹调制频率下从激光中提取信号,当前的受激拉曼散射(SRS)显微镜已达到散粒噪声限制的检测灵敏度。SRS显微镜中基于激光的本地振荡器不仅会产生高水平的信号,还会带来大量散粒噪声,从而降低图像质量和光谱保真度。在此,我们展示了一种去噪算法,该算法通过总变差最小化在空间和光谱域中去除噪声。对于稀释的二甲基亚砜溶液,SRS光谱图像的信噪比提高了多达57倍,对于生物组织则提高了15倍。原本隐藏在噪声中的目标分子的弱拉曼峰被揭示出来。将去噪算法与多元曲线分辨相结合,可以区分脂肪储存和富含蛋白质的细胞器。总之,我们的方法在不进行帧平均的情况下显著提高了检测灵敏度,这对于光谱成像可能是有用的。

相似文献

1
Denoising Stimulated Raman Spectroscopic Images by Total Variation Minimization.
J Phys Chem C Nanomater Interfaces. 2015 Aug 20;119(33):19397-19403. doi: 10.1021/acs.jpcc.5b06980. Epub 2015 Jul 29.
2
Fast denoising and lossless spectrum extraction in stimulated Raman scattering microscopy.
J Biophotonics. 2021 Aug;14(8):e202100080. doi: 10.1002/jbio.202100080. Epub 2021 May 24.
4
Shot-Noise-Limited Two-Color Stimulated Raman Scattering Microscopy with a Balanced Detection Scheme.
J Phys Chem B. 2020 Apr 2;124(13):2591-2599. doi: 10.1021/acs.jpcb.0c01065. Epub 2020 Mar 24.
6
Stimulated Raman Scattering Microscopy with a Robust Fibre Laser Source.
Nat Photonics. 2014 Feb 1;8(2):153-159. doi: 10.1038/nphoton.2013.360.
9
Broadband stimulated Raman scattering microscopy with wavelength-scanning detection.
J Raman Spectrosc. 2020 Oct;51(10):1951-1959. doi: 10.1002/jrs.5816. Epub 2020 Jan 3.
10
Denoising of stimulated Raman scattering microscopy images via deep learning.
Biomed Opt Express. 2019 Jul 10;10(8):3860-3874. doi: 10.1364/BOE.10.003860. eCollection 2019 Aug 1.

引用本文的文献

1
Self-Supervised Elimination of Non-Independent Noise in Hyperspectral Imaging.
Newton. 2025 Aug 4;1(6). doi: 10.1016/j.newton.2025.100195. Epub 2025 Jul 24.
2
Machine learning empowered coherent Raman imaging and analysis for biomedical applications.
Commun Eng. 2025 Jan 25;4(1):8. doi: 10.1038/s44172-025-00345-1.
3
High-content stimulated Raman histology of human breast cancer.
Theranostics. 2024 Jan 27;14(4):1361-1370. doi: 10.7150/thno.90336. eCollection 2024.
4
Full-Spectrum CARS Microscopy of Cells and Tissues with Ultrashort White-Light Continuum Pulses.
J Phys Chem B. 2023 Jun 1;127(21):4733-4745. doi: 10.1021/acs.jpcb.3c01443. Epub 2023 May 17.
5
Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering.
Biophys J. 2022 Apr 19;121(8):1525-1540. doi: 10.1016/j.bpj.2022.03.006. Epub 2022 Mar 8.
6
Multiplex Stimulated Raman Scattering Imaging Cytometry Reveals Lipid-Rich Protrusions in Cancer Cells under Stress Condition.
iScience. 2020 Mar 27;23(3):100953. doi: 10.1016/j.isci.2020.100953. Epub 2020 Feb 29.
7
Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption.
Sci Adv. 2019 Jul 19;5(7):eaav7127. doi: 10.1126/sciadv.aav7127. eCollection 2019 Jul.
8
In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy.
Annu Rev Anal Chem (Palo Alto Calif). 2016 Jun 12;9(1):69-93. doi: 10.1146/annurev-anchem-071015-041627.

本文引用的文献

2
Adaptive image denoising by targeted databases.
IEEE Trans Image Process. 2015 Jul;24(7):2167-81. doi: 10.1109/TIP.2015.2414873. Epub 2015 Mar 19.
3
High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues.
Nat Photonics. 2014;8:627-634. doi: 10.1038/nphoton.2014.145.
5
Monte Carlo non-local means: random sampling for large-scale image filtering.
IEEE Trans Image Process. 2014 Aug;23(8):3711-25. doi: 10.1109/TIP.2014.2327813.
6
Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules.
Angew Chem Int Ed Engl. 2014 Jun 2;53(23):5827-31. doi: 10.1002/anie.201400328. Epub 2014 Apr 17.
8
Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering.
Nat Methods. 2014 Apr;11(4):410-2. doi: 10.1038/nmeth.2878. Epub 2014 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验