Suppr超能文献

临床研究信息学与电子健康记录数据。

Clinical research informatics and electronic health record data.

作者信息

Richesson R L, Horvath M M, Rusincovitch S A

机构信息

Rachel Richesson, PhD, MPH, Duke University School of Nursing, 2007 Pearson Bldg, 311 Trent Drive, Durham, NC, 27710, USA, Tel: +1 (919) 681-0825, E-mai:

出版信息

Yearb Med Inform. 2014 Aug 15;9(1):215-23. doi: 10.15265/IY-2014-0009.

Abstract

OBJECTIVES

The goal of this survey is to discuss the impact of the growing availability of electronic health record (EHR) data on the evolving field of Clinical Research Informatics (CRI), which is the union of biomedical research and informatics.

RESULTS

Major challenges for the use of EHR-derived data for research include the lack of standard methods for ensuring that data quality, completeness, and provenance are sufficient to assess the appropriateness of its use for research. Areas that need continued emphasis include methods for integrating data from heterogeneous sources, guidelines (including explicit phenotype definitions) for using these data in both pragmatic clinical trials and observational investigations, strong data governance to better understand and control quality of enterprise data, and promotion of national standards for representing and using clinical data.

CONCLUSIONS

The use of EHR data has become a priority in CRI. Awareness of underlying clinical data collection processes will be essential in order to leverage these data for clinical research and patient care, and will require multi-disciplinary teams representing clinical research, informatics, and healthcare operations. Considerations for the use of EHR data provide a starting point for practical applications and a CRI research agenda, which will be facilitated by CRI's key role in the infrastructure of a learning healthcare system.

摘要

目的

本次调查的目的是探讨电子健康记录(EHR)数据可用性不断提高对临床研究信息学(CRI)这一不断发展的领域的影响,临床研究信息学是生物医学研究与信息学的结合。

结果

将源自EHR的数据用于研究面临的主要挑战包括缺乏标准方法来确保数据质量、完整性和来源足以评估其用于研究的适用性。需要持续重点关注的领域包括整合来自异构源数据的方法、在务实的临床试验和观察性研究中使用这些数据的指南(包括明确的表型定义)、强大的数据治理以更好地理解和控制企业数据质量,以及推广临床数据表示和使用的国家标准。

结论

EHR数据的使用已成为CRI的优先事项。了解基础临床数据收集过程对于将这些数据用于临床研究和患者护理至关重要,并且需要代表临床研究、信息学和医疗保健运营的多学科团队。使用EHR数据的考量为实际应用和CRI研究议程提供了一个起点,CRI在学习型医疗系统基础设施中的关键作用将推动这一议程。

相似文献

1
Clinical research informatics and electronic health record data.
Yearb Med Inform. 2014 Aug 15;9(1):215-23. doi: 10.15265/IY-2014-0009.
2
Using Research to Transform Electronic Health Record Modernization: Advancing a VA Partnered Research Agenda to Increase Research Impacts.
J Gen Intern Med. 2023 Oct;38(Suppl 4):965-973. doi: 10.1007/s11606-023-08289-y. Epub 2023 Oct 5.
3
Clinical Informatics Researcher's Desiderata for the Data Content of the Next Generation Electronic Health Record.
Appl Clin Inform. 2017 Oct;8(4):1159-1172. doi: 10.4338/ACI-2017-06-R-0101. Epub 2017 Dec 21.
4
Clinical Research Informatics for Big Data and Precision Medicine.
Yearb Med Inform. 2016 Nov 10(1):211-218. doi: 10.15265/IY-2016-019.
6
7
Harnessing EHR data for health research.
Nat Med. 2024 Jul;30(7):1847-1855. doi: 10.1038/s41591-024-03074-8. Epub 2024 Jul 4.
8
Safe use of electronic health records and health information technology systems: trust but verify.
J Patient Saf. 2013 Dec;9(4):177-89. doi: 10.1097/PTS.0b013e3182a8c2b2.
9
Pragmatic (trial) informatics: a perspective from the NIH Health Care Systems Research Collaboratory.
J Am Med Inform Assoc. 2017 Sep 1;24(5):996-1001. doi: 10.1093/jamia/ocx016.
10
Electronic health records and cardiac implantable electronic devices: new paradigms and efficiencies.
J Interv Card Electrophysiol. 2016 Oct;47(1):29-35. doi: 10.1007/s10840-016-0170-1. Epub 2016 Sep 1.

引用本文的文献

1
Clinical Research Informatics: a Decade-in-Review.
Yearb Med Inform. 2024 Aug;33(1):127-142. doi: 10.1055/s-0044-1800732. Epub 2025 Apr 8.
2
Integrating clinical research into electronic health record workflows to support a learning health system.
JAMIA Open. 2024 May 15;7(2):ooae023. doi: 10.1093/jamiaopen/ooae023. eCollection 2024 Jul.
3
Systematically assessing the quality of dental electronic health record data for an investigation into oral health care disparities.
J Public Health Dent. 2024 Sep;84(3):242-250. doi: 10.1111/jphd.12618. Epub 2024 Apr 24.
4
6
The ethical and legal landscape of brain data governance.
PLoS One. 2022 Dec 29;17(12):e0273473. doi: 10.1371/journal.pone.0273473. eCollection 2022.
7
Identifying requisite learning health system competencies: a scoping review.
BMJ Open. 2022 Aug 23;12(8):e061124. doi: 10.1136/bmjopen-2022-061124.

本文引用的文献

1
Strategies for handling missing data in electronic health record derived data.
EGEMS (Wash DC). 2013 Dec 17;1(3):1035. doi: 10.13063/2327-9214.1035. eCollection 2013.
2
Changes in diabetes-related complications in the United States, 1990-2010.
N Engl J Med. 2014 Apr 17;370(16):1514-23. doi: 10.1056/NEJMoa1310799.
3
Innovative uses of electronic health records and social media for public health surveillance.
Curr Diab Rep. 2014 Mar;14(3):468. doi: 10.1007/s11892-013-0468-7.
4
A comprehensive framework for data quality assessment in CER.
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:86-8. eCollection 2013.
5
Leverage hadoop framework for large scale clinical informatics applications.
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:53. eCollection 2013.
6
Electronic health records-driven phenotyping: challenges, recent advances, and perspectives.
J Am Med Inform Assoc. 2013 Dec;20(e2):e206-11. doi: 10.1136/amiajnl-2013-002428.
8
Recent trends in biomedical informatics: a study based on JAMIA articles.
J Am Med Inform Assoc. 2013 Dec;20(e2):e198-205. doi: 10.1136/amiajnl-2013-002429. Epub 2013 Nov 8.
9
A review of approaches to identifying patient phenotype cohorts using electronic health records.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):221-30. doi: 10.1136/amiajnl-2013-001935. Epub 2013 Nov 7.
10
Normalization and standardization of electronic health records for high-throughput phenotyping: the SHARPn consortium.
J Am Med Inform Assoc. 2013 Dec;20(e2):e341-8. doi: 10.1136/amiajnl-2013-001939. Epub 2013 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验