Suppr超能文献

可变聚腺苷酸化在T细胞激活后调节CELF1/CUGBP1靶转录本。

Alternative polyadenylation regulates CELF1/CUGBP1 target transcripts following T cell activation.

作者信息

Beisang Daniel, Reilly Cavan, Bohjanen Paul R

机构信息

Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN, USA; Department of Microbiology, University of Minnesota, Minneapolis, MN, USA.

Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA.

出版信息

Gene. 2014 Oct 15;550(1):93-100. doi: 10.1016/j.gene.2014.08.021. Epub 2014 Aug 11.

Abstract

Alternative polyadenylation (APA) is an evolutionarily conserved mechanism for regulating gene expression. Transcript 3' end shortening through changes in polyadenylation site usage occurs following T cell activation, but the consequences of APA on gene expression are poorly understood. We previously showed that GU-rich elements (GREs) found in the 3' untranslated regions of select transcripts mediate rapid mRNA decay by recruiting the protein CELF1/CUGBP1. Using a global RNA sequencing approach, we found that a network of CELF1 target transcripts involved in cell division underwent preferential 3' end shortening via APA following T cell activation, resulting in decreased inclusion of CELF1 binding sites and increased transcript expression. We present a model whereby CELF1 regulates APA site selection following T cell activation through reversible binding to nearby GRE sequences. These findings provide insight into the role of APA in controlling cellular proliferation during biological processes such as development, oncogenesis and T cell activation.

摘要

可变聚腺苷酸化(APA)是一种进化上保守的基因表达调控机制。T细胞激活后,通过聚腺苷酸化位点使用的变化导致转录本3'端缩短,但人们对APA对基因表达的影响了解甚少。我们之前表明,在特定转录本的3'非翻译区发现的富含GU的元件(GREs)通过招募蛋白CELF1/CUGBP1介导mRNA的快速降解。使用全基因组RNA测序方法,我们发现一个参与细胞分裂的CELF1靶转录本网络在T细胞激活后通过APA优先发生3'端缩短,导致CELF1结合位点的包含减少和转录本表达增加。我们提出了一个模型,即CELF1通过与附近的GRE序列可逆结合来调节T细胞激活后的APA位点选择。这些发现为APA在发育、肿瘤发生和T细胞激活等生物学过程中控制细胞增殖的作用提供了见解。

相似文献

1
Alternative polyadenylation regulates CELF1/CUGBP1 target transcripts following T cell activation.
Gene. 2014 Oct 15;550(1):93-100. doi: 10.1016/j.gene.2014.08.021. Epub 2014 Aug 11.
2
Regulation of CUG-binding protein 1 (CUGBP1) binding to target transcripts upon T cell activation.
J Biol Chem. 2012 Jan 6;287(2):950-60. doi: 10.1074/jbc.M111.291658. Epub 2011 Nov 23.
3
Coordinate regulation of mRNA decay networks by GU-rich elements and CELF1.
Curr Opin Genet Dev. 2011 Aug;21(4):444-51. doi: 10.1016/j.gde.2011.03.002. Epub 2011 Apr 13.
4
Conserved GU-rich elements mediate mRNA decay by binding to CUG-binding protein 1.
Mol Cell. 2008 Feb 1;29(2):263-70. doi: 10.1016/j.molcel.2007.11.024.
5
Analysis of CUGBP1 targets identifies GU-repeat sequences that mediate rapid mRNA decay.
Mol Cell Biol. 2010 Aug;30(16):3970-80. doi: 10.1128/MCB.00624-10. Epub 2010 Jun 14.
6
GU-rich RNA: expanding CUGBP1 function, broadening mRNA turnover.
Mol Cell. 2008 Feb 1;29(2):151-2. doi: 10.1016/j.molcel.2008.01.005.
9
CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.
Biochim Biophys Acta Gene Regul Mech. 2017 Sep;1860(9):911-921. doi: 10.1016/j.bbagrm.2017.07.004. Epub 2017 Jul 19.

引用本文的文献

1
Transition of CELF2 PAS usage promotes recovery of refractory JDM through alternative splicing regulation of CTSB.
Mol Ther Nucleic Acids. 2025 Jul 1;36(3):102624. doi: 10.1016/j.omtn.2025.102624. eCollection 2025 Sep 9.
4
Genome-wide kinetic profiling of pre-mRNA 3' end cleavage.
RNA. 2024 Feb 16;30(3):256-270. doi: 10.1261/rna.079783.123.
5
The Dynamic Poly(A) Tail Acts as a Signal Hub in mRNA Metabolism.
Cells. 2023 Feb 10;12(4):572. doi: 10.3390/cells12040572.
7
The three as: Alternative splicing, alternative polyadenylation and their impact on apoptosis in immune function.
Immunol Rev. 2021 Nov;304(1):30-50. doi: 10.1111/imr.13018. Epub 2021 Aug 8.
8
Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression.
Front Plant Sci. 2020 Aug 14;11:1252. doi: 10.3389/fpls.2020.01252. eCollection 2020.
9
MiR-330-3p functions as a tumor suppressor that regulates glioma cell proliferation and migration by targeting .
Arch Med Sci. 2020 May 8;16(5):1166-1175. doi: 10.5114/aoms.2020.95027. eCollection 2020.

本文引用的文献

1
Alternative polyadenylation diversifies post-transcriptional regulation by selective RNA-protein interactions.
Mol Syst Biol. 2014 Feb 25;10(2):719. doi: 10.1002/msb.135068. Print 2014.
2
RNA polyadenylation sites on the genomes of microorganisms, animals, and plants.
PLoS One. 2013 Nov 18;8(11):e79511. doi: 10.1371/journal.pone.0079511. eCollection 2013.
3
Overlapping and distinct functions of CstF64 and CstF64τ in mammalian mRNA 3' processing.
RNA. 2013 Dec;19(12):1781-90. doi: 10.1261/rna.042317.113. Epub 2013 Oct 22.
4
Extensive transcriptional heterogeneity revealed by isoform profiling.
Nature. 2013 May 2;497(7447):127-31. doi: 10.1038/nature12121. Epub 2013 Apr 24.
5
Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation.
Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18773-8. doi: 10.1073/pnas.1211101109. Epub 2012 Oct 29.
6
Alternative splicing networks regulated by signaling in human T cells.
RNA. 2012 May;18(5):1029-40. doi: 10.1261/rna.032243.112. Epub 2012 Mar 27.
7
Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012 Mar 4;9(4):357-9. doi: 10.1038/nmeth.1923.
8
Regulation of CUG-binding protein 1 (CUGBP1) binding to target transcripts upon T cell activation.
J Biol Chem. 2012 Jan 6;287(2):950-60. doi: 10.1074/jbc.M111.291658. Epub 2011 Nov 23.
9
Mechanisms and consequences of alternative polyadenylation.
Mol Cell. 2011 Sep 16;43(6):853-66. doi: 10.1016/j.molcel.2011.08.017.
10
SHRiMP2: sensitive yet practical SHort Read Mapping.
Bioinformatics. 2011 Apr 1;27(7):1011-2. doi: 10.1093/bioinformatics/btr046. Epub 2011 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验