Stein David S, Stevens Leslie M
Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
Wiley Interdiscip Rev Dev Biol. 2014 Sep-Oct;3(5):301-30. doi: 10.1002/wdev.138. Epub 2014 May 29.
The pathway that generates the dorsal-ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. For further resources related to this article, please visit the WIREs website.
The authors have declared no conflicts of interest for this article.
在过去三十年里,果蝇胚胎背腹(DV)轴形成的信号通路一直是深入研究的对象。最初的不对称信号在卵子发生过程中产生,卵母细胞核移至卵母细胞的一个前角,通过果蝇转化生长因子(TGF)-α同源物Gurken(从卵母细胞分泌)与包围卵母细胞的滤泡上皮细胞表达的果蝇表皮生长因子受体(EGFR)之间的信号传导,在滤泡内建立DV极性。未接触Gurken的滤泡细胞走向腹侧命运并表达Pipe,一种硫酸转移酶,它能酶促修饰卵壳内卵黄膜层的成分,从而将DV空间信息从滤泡传递到卵。这些腹侧硫酸化的卵壳蛋白构成一个局部信号,指导在卵壳与胚胎膜之间的卵周隙内活性Spätzle配体的腹侧受限形成。Spätzle激活胚胎膜中的跨膜受体Toll。Toll信号传入胚胎导致在合胞体胚盘阶段胚胎的细胞核内形成转录因子Dorsal从腹侧到背侧的梯度。Dorsal控制一大群合子靶基因(Dorsal基因调控网络)沿胚胎DV周长的空间特异性表达。本文回顾了经典研究,并将其与近期工作的细节相结合,这些工作推进了我们对建立果蝇胚胎DV极性的复杂信号通路的理解。有关本文的更多资源,请访问WIREs网站。
作者声明本文不存在利益冲突。