Barbosa Rommel Melgaço, Nacano Letícia Ramos, Freitas Rodolfo, Batista Bruno Lemos, Barbosa Fernando
Inst. Informática, Univ. Federal de Goiás, Goiânia-Go, Brazil.
J Food Sci. 2014 Sep;79(9):C1672-7. doi: 10.1111/1750-3841.12577. Epub 2014 Aug 14.
This article aims to evaluate 2 machine learning algorithms, decision trees and naïve Bayes (NB), for egg classification (free-range eggs compared with battery eggs). The database used for the study consisted of 15 chemical elements (As, Ba, Cd, Co, Cs, Cu, Fe, Mg, Mn, Mo, Pb, Se, Sr, V, and Zn) determined in 52 eggs samples (20 free-range and 32 battery eggs) by inductively coupled plasma mass spectrometry. Our results demonstrated that decision trees and NB associated with the mineral contents of eggs provide a high level of accuracy (above 80% and 90%, respectively) for classification between free-range and battery eggs and can be used as an alternative method for adulteration evaluation.
本文旨在评估两种机器学习算法——决策树和朴素贝叶斯(NB),用于鸡蛋分类(散养鸡蛋与笼养鸡蛋对比)。该研究使用的数据库包含通过电感耦合等离子体质谱法在52个鸡蛋样本(20个散养鸡蛋和32个笼养鸡蛋)中测定的15种化学元素(砷、钡、镉、钴、铯、铜、铁、镁、锰、钼、铅、硒、锶、钒和锌)。我们的结果表明,与鸡蛋矿物质含量相关的决策树和NB算法在散养鸡蛋和笼养鸡蛋分类方面具有较高的准确率(分别高于80%和90%),并且可作为掺假评估的替代方法。