Suppr超能文献

利用决策树、朴素贝叶斯算法和微量元素模式来控制散养草饲母鸡所产鸡蛋的真伪。

The use of decision trees and naïve Bayes algorithms and trace element patterns for controlling the authenticity of free-range-pastured hens' eggs.

作者信息

Barbosa Rommel Melgaço, Nacano Letícia Ramos, Freitas Rodolfo, Batista Bruno Lemos, Barbosa Fernando

机构信息

Inst. Informática, Univ. Federal de Goiás, Goiânia-Go, Brazil.

出版信息

J Food Sci. 2014 Sep;79(9):C1672-7. doi: 10.1111/1750-3841.12577. Epub 2014 Aug 14.

Abstract

This article aims to evaluate 2 machine learning algorithms, decision trees and naïve Bayes (NB), for egg classification (free-range eggs compared with battery eggs). The database used for the study consisted of 15 chemical elements (As, Ba, Cd, Co, Cs, Cu, Fe, Mg, Mn, Mo, Pb, Se, Sr, V, and Zn) determined in 52 eggs samples (20 free-range and 32 battery eggs) by inductively coupled plasma mass spectrometry. Our results demonstrated that decision trees and NB associated with the mineral contents of eggs provide a high level of accuracy (above 80% and 90%, respectively) for classification between free-range and battery eggs and can be used as an alternative method for adulteration evaluation.

摘要

本文旨在评估两种机器学习算法——决策树和朴素贝叶斯(NB),用于鸡蛋分类(散养鸡蛋与笼养鸡蛋对比)。该研究使用的数据库包含通过电感耦合等离子体质谱法在52个鸡蛋样本(20个散养鸡蛋和32个笼养鸡蛋)中测定的15种化学元素(砷、钡、镉、钴、铯、铜、铁、镁、锰、钼、铅、硒、锶、钒和锌)。我们的结果表明,与鸡蛋矿物质含量相关的决策树和NB算法在散养鸡蛋和笼养鸡蛋分类方面具有较高的准确率(分别高于80%和90%),并且可作为掺假评估的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验