Fairhead Michael, Shen Di, Chan Louis K M, Lowe Ed D, Donohoe Timothy J, Howarth Mark
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK.
Bioorg Med Chem. 2014 Oct 1;22(19):5476-86. doi: 10.1016/j.bmc.2014.07.029. Epub 2014 Jul 24.
The pathway of ligand dissociation and how binding sites respond to force are not well understood for any macromolecule. Force effects on biological receptors have been studied through simulation or force spectroscopy, but not by high resolution structural experiments. To investigate this challenge, we took advantage of the extreme stability of the streptavidin-biotin interaction, a paradigm for understanding non-covalent binding as well as a ubiquitous research tool. We synthesized a series of biotin-conjugates having an unchanged strong-binding biotin moiety, along with pincer-like arms designed to clash with the protein surface: 'Love-Hate ligands'. The Love-Hate ligands contained various 2,6-di-ortho aryl groups, installed using Suzuki coupling as the last synthetic step, making the steric repulsion highly modular. We determined binding affinity, as well as solving 1.1-1.6Å resolution crystal structures of streptavidin bound to Love-Hate ligands. Striking distortion of streptavidin's binding contacts was found for these complexes. Hydrogen bonds to biotin's ureido and thiophene rings were preserved for all the ligands, but biotin's valeryl tail was distorted from the classic conformation. Streptavidin's L3/4 loop, normally forming multiple energetically-important hydrogen bonds to biotin, was forced away by clashes with Love-Hate ligands, but Ser45 from L3/4 could adapt to hydrogen-bond to a different part of the ligand. This approach of preparing conflicted ligands represents a direct way to visualize strained biological interactions and test protein plasticity.
对于任何大分子而言,配体解离的途径以及结合位点如何响应力,目前都还没有被很好地理解。人们已经通过模拟或力谱研究了力对生物受体的影响,但尚未通过高分辨率结构实验进行研究。为了应对这一挑战,我们利用了链霉亲和素 - 生物素相互作用的极端稳定性,这是理解非共价结合的范例,也是一种广泛使用的研究工具。我们合成了一系列生物素缀合物,它们具有不变的强结合生物素部分,以及设计用于与蛋白质表面发生冲突的钳状臂:“爱恨配体”。爱恨配体包含各种2,6 - 二邻位芳基,通过铃木偶联作为最后一步合成步骤引入,使得空间排斥具有高度模块化。我们测定了结合亲和力,并解析了链霉亲和素与爱恨配体结合的分辨率为1.1 - 1.6Å的晶体结构。对于这些复合物,发现链霉亲和素的结合接触发生了显著扭曲。所有配体与生物素的脲基和噻吩环的氢键都得以保留,但生物素的戊酰基尾部从经典构象发生了扭曲。链霉亲和素的L3/4环通常与生物素形成多个能量上重要的氢键,但由于与爱恨配体的冲突而被迫远离,但L3/4环上的Ser45可以适应与配体的不同部分形成氢键。这种制备冲突配体的方法代表了一种可视化紧张的生物相互作用并测试蛋白质可塑性的直接方式。