Suppr超能文献

过表达PGC1-α可预防后肢卸载小鼠的代谢改变和比目鱼肌萎缩。

PGC1-α over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice.

作者信息

Cannavino Jessica, Brocca Lorenza, Sandri Marco, Bottinelli Roberto, Pellegrino Maria Antonietta

机构信息

Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy.

Venetian Institute of Molecular Medicine and Dulbecco Telethon Institute, 35129, Padova, Italy Interuniversity Institute of Myology, University of Pavia, Pavia, Italy.

出版信息

J Physiol. 2014 Oct 15;592(20):4575-89. doi: 10.1113/jphysiol.2014.275545. Epub 2014 Aug 15.

Abstract

Prolonged skeletal muscle inactivity causes muscle fibre atrophy. Redox imbalance has been considered one of the major triggers of skeletal muscle disuse atrophy, but whether redox imbalance is actually the major cause or simply a consequence of muscle disuse remains of debate. Here we hypothesized that a metabolic stress mediated by PGC-1α down-regulation plays a major role in disuse atrophy. First we studied the adaptations of soleus to mice hindlimb unloading (HU) in the early phase of disuse (3 and 7 days of HU) with and without antioxidant treatment (trolox). HU caused a reduction in cross-sectional area, redox status alteration (NRF2, SOD1 and catalase up-regulation), and induction of the ubiquitin proteasome system (MuRF-1 and atrogin-1 mRNA up-regulation) and autophagy (Beclin1 and p62 mRNA up-regulation). Trolox completely prevented the induction of NRF2, SOD1 and catalase mRNAs, but not atrophy or induction of catabolic systems in unloaded muscles, suggesting that oxidative stress is not a major cause of disuse atrophy. HU mice showed a marked alteration of oxidative metabolism. PGC-1α and mitochondrial complexes were down-regulated and DRP1 was up-regulated. To define the link between mitochondrial dysfunction and disuse muscle atrophy we unloaded mice overexpressing PGC-1α. Transgenic PGC-1α animals did not show metabolic alteration during unloading, preserving muscle size through the reduction of autophagy and proteasome degradation. Our results indicate that mitochondrial dysfunction plays a major role in disuse atrophy and that compounds inducing PGC-1α expression could be useful to treat/prevent muscle atrophy.

摘要

骨骼肌长期不活动会导致肌纤维萎缩。氧化还原失衡被认为是骨骼肌废用性萎缩的主要触发因素之一,但氧化还原失衡究竟是废用性萎缩的主要原因还是仅仅是肌肉废用的结果仍存在争议。在此,我们假设由PGC-1α下调介导的代谢应激在废用性萎缩中起主要作用。首先,我们研究了在废用早期(后肢卸载3天和7天)比目鱼肌对小鼠后肢卸载(HU)的适应性,有无抗氧化剂处理(曲洛司坦)。HU导致横截面积减小、氧化还原状态改变(NRF2、SOD1和过氧化氢酶上调)以及泛素蛋白酶体系统的诱导(MuRF-1和atrogin-1 mRNA上调)和自噬(Beclin1和p62 mRNA上调)。曲洛司坦完全阻止了NRF2、SOD1和过氧化氢酶mRNA的诱导,但不能阻止卸载肌肉的萎缩或分解代谢系统的诱导,这表明氧化应激不是废用性萎缩的主要原因。HU小鼠表现出氧化代谢的明显改变。PGC-1α和线粒体复合物下调,而DRP1上调。为了确定线粒体功能障碍与废用性肌肉萎缩之间的联系,我们对过表达PGC-1α的小鼠进行了后肢卸载。转基因PGC-1α动物在卸载过程中未表现出代谢改变,通过减少自噬和蛋白酶体降解来维持肌肉大小。我们的结果表明,线粒体功能障碍在废用性萎缩中起主要作用,诱导PGC-1α表达的化合物可能有助于治疗/预防肌肉萎缩。

相似文献

1
PGC1-α over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice.
J Physiol. 2014 Oct 15;592(20):4575-89. doi: 10.1113/jphysiol.2014.275545. Epub 2014 Aug 15.
2
The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading.
J Physiol. 2015 Apr 15;593(8):1981-95. doi: 10.1113/jphysiol.2014.286740. Epub 2015 Feb 4.
3
PGC-1α over-expression suppresses the skeletal muscle atrophy and myofiber-type composition during hindlimb unloading.
Biosci Biotechnol Biochem. 2017 Mar;81(3):500-513. doi: 10.1080/09168451.2016.1254531. Epub 2016 Nov 21.
4
Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats.
Nutr Res. 2012 Sep;32(9):676-83. doi: 10.1016/j.nutres.2012.07.005. Epub 2012 Sep 17.
8
A novel hindlimb immobilization procedure for studying skeletal muscle atrophy and recovery in mouse.
J Appl Physiol (1985). 2009 Jun;106(6):2049-59. doi: 10.1152/japplphysiol.91505.2008. Epub 2009 Apr 2.
9
Muscle immobilization and remobilization downregulates PGC-1α signaling and the mitochondrial biogenesis pathway.
J Appl Physiol (1985). 2013 Dec;115(11):1618-25. doi: 10.1152/japplphysiol.01354.2012. Epub 2013 Aug 22.

引用本文的文献

1
Muscle Disuse Atrophy.
Adv Exp Med Biol. 2025;1478:157-183. doi: 10.1007/978-3-031-88361-3_8.
2
A new Drosophila model of prolonged inactivity shortens lifespan and impairs muscle function.
Sci Rep. 2025 Jul 31;15(1):27908. doi: 10.1038/s41598-025-13446-w.
3
Residual force enhancement following hindlimb unloading and exercise prehabilitation.
J Muscle Res Cell Motil. 2025 Jul 31. doi: 10.1007/s10974-025-09703-0.
4
Targeting ERRs to counteract age-related muscle atrophy associated with physical inactivity: a pilot study.
Front Physiol. 2025 Jul 7;16:1616693. doi: 10.3389/fphys.2025.1616693. eCollection 2025.
5
Acupuncture treatment preserves soleus muscle mass and improves mitochondrial function in a rat model of disuse atrophy.
Integr Med Res. 2025 Sep;14(3):101178. doi: 10.1016/j.imr.2025.101178. Epub 2025 Jun 16.
7
Aging and Altered Gravity: A Cellular Perspective.
FASEB J. 2025 Jul 15;39(13):e70777. doi: 10.1096/fj.202402989R.
10
Metabolic dysregulation contributes to the development of dysferlinopathy.
Life Sci Alliance. 2025 Feb 28;8(5). doi: 10.26508/lsa.202402991. Print 2025 May.

本文引用的文献

2
Cellular and molecular mechanisms of muscle atrophy.
Dis Model Mech. 2013 Jan;6(1):25-39. doi: 10.1242/dmm.010389.
3
Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats.
Nutr Res. 2012 Sep;32(9):676-83. doi: 10.1016/j.nutres.2012.07.005. Epub 2012 Sep 17.
6
The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms.
J Physiol. 2012 Oct 15;590(20):5211-30. doi: 10.1113/jphysiol.2012.240267. Epub 2012 Jul 30.
8
Caveolin-1 inhibits expression of antioxidant enzymes through direct interaction with nuclear erythroid 2 p45-related factor-2 (Nrf2).
J Biol Chem. 2012 Jun 15;287(25):20922-30. doi: 10.1074/jbc.M112.352336. Epub 2012 Apr 30.
9
Oxidative stress and disuse muscle atrophy: cause or consequence?
Curr Opin Clin Nutr Metab Care. 2012 May;15(3):240-5. doi: 10.1097/MCO.0b013e328352b4c2.
10
Posttranslational modifications control FoxO3 activity during denervation.
Am J Physiol Cell Physiol. 2012 Feb 1;302(3):C587-96. doi: 10.1152/ajpcell.00142.2011. Epub 2011 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验