Cannavino Jessica, Brocca Lorenza, Sandri Marco, Bottinelli Roberto, Pellegrino Maria Antonietta
Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy.
Venetian Institute of Molecular Medicine and Dulbecco Telethon Institute, 35129, Padova, Italy Interuniversity Institute of Myology, University of Pavia, Pavia, Italy.
J Physiol. 2014 Oct 15;592(20):4575-89. doi: 10.1113/jphysiol.2014.275545. Epub 2014 Aug 15.
Prolonged skeletal muscle inactivity causes muscle fibre atrophy. Redox imbalance has been considered one of the major triggers of skeletal muscle disuse atrophy, but whether redox imbalance is actually the major cause or simply a consequence of muscle disuse remains of debate. Here we hypothesized that a metabolic stress mediated by PGC-1α down-regulation plays a major role in disuse atrophy. First we studied the adaptations of soleus to mice hindlimb unloading (HU) in the early phase of disuse (3 and 7 days of HU) with and without antioxidant treatment (trolox). HU caused a reduction in cross-sectional area, redox status alteration (NRF2, SOD1 and catalase up-regulation), and induction of the ubiquitin proteasome system (MuRF-1 and atrogin-1 mRNA up-regulation) and autophagy (Beclin1 and p62 mRNA up-regulation). Trolox completely prevented the induction of NRF2, SOD1 and catalase mRNAs, but not atrophy or induction of catabolic systems in unloaded muscles, suggesting that oxidative stress is not a major cause of disuse atrophy. HU mice showed a marked alteration of oxidative metabolism. PGC-1α and mitochondrial complexes were down-regulated and DRP1 was up-regulated. To define the link between mitochondrial dysfunction and disuse muscle atrophy we unloaded mice overexpressing PGC-1α. Transgenic PGC-1α animals did not show metabolic alteration during unloading, preserving muscle size through the reduction of autophagy and proteasome degradation. Our results indicate that mitochondrial dysfunction plays a major role in disuse atrophy and that compounds inducing PGC-1α expression could be useful to treat/prevent muscle atrophy.
骨骼肌长期不活动会导致肌纤维萎缩。氧化还原失衡被认为是骨骼肌废用性萎缩的主要触发因素之一,但氧化还原失衡究竟是废用性萎缩的主要原因还是仅仅是肌肉废用的结果仍存在争议。在此,我们假设由PGC-1α下调介导的代谢应激在废用性萎缩中起主要作用。首先,我们研究了在废用早期(后肢卸载3天和7天)比目鱼肌对小鼠后肢卸载(HU)的适应性,有无抗氧化剂处理(曲洛司坦)。HU导致横截面积减小、氧化还原状态改变(NRF2、SOD1和过氧化氢酶上调)以及泛素蛋白酶体系统的诱导(MuRF-1和atrogin-1 mRNA上调)和自噬(Beclin1和p62 mRNA上调)。曲洛司坦完全阻止了NRF2、SOD1和过氧化氢酶mRNA的诱导,但不能阻止卸载肌肉的萎缩或分解代谢系统的诱导,这表明氧化应激不是废用性萎缩的主要原因。HU小鼠表现出氧化代谢的明显改变。PGC-1α和线粒体复合物下调,而DRP1上调。为了确定线粒体功能障碍与废用性肌肉萎缩之间的联系,我们对过表达PGC-1α的小鼠进行了后肢卸载。转基因PGC-1α动物在卸载过程中未表现出代谢改变,通过减少自噬和蛋白酶体降解来维持肌肉大小。我们的结果表明,线粒体功能障碍在废用性萎缩中起主要作用,诱导PGC-1α表达的化合物可能有助于治疗/预防肌肉萎缩。