Suppr超能文献

线粒体动力学改变和PGC-1α过表达在后肢卸载后快肌萎缩中的作用。

The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading.

作者信息

Cannavino Jessica, Brocca Lorenza, Sandri Marco, Grassi Bruno, Bottinelli Roberto, Pellegrino Maria Antonietta

机构信息

Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy.

出版信息

J Physiol. 2015 Apr 15;593(8):1981-95. doi: 10.1113/jphysiol.2014.286740. Epub 2015 Feb 4.

Abstract

KEY POINTS

Skeletal muscle atrophy occurs as a result of disuse. Although several studies have established that a decrease in protein synthesis and increase in protein degradation lead to muscle atrophy, little is known about the triggers underlying such processes. A growing body of evidence challenges oxidative stress as a trigger of disuse atrophy; furthermore, it is also becoming evident that mitochondrial dysfunction may play a causative role in determining muscle atrophy. Mitochondrial fusion and fission have emerged as important processes that govern mitochondrial function and PGC-1α may regulate fusion/fission events. Although most studies on mice have focused on the anti-gravitary slow soleus muscle as it is preferentially affected by disuse atrophy, several fast muscles (including gastrocnemius) go through a significant loss of mass following unloading. Here we found that in fast muscles an early down-regulation of pro-fusion proteins, through concomitant AMP-activated protein kinase (AMPK) activation, can activate catabolic systems, and ultimately cause muscle mass loss in disuse. Elevated muscle PGC-1α completely preserves muscle mass by preventing the fall in pro-fusion protein expression, AMPK and catabolic system activation, suggesting that compounds inducing PGC-1α expression could be useful to treat and prevent muscle atrophy.

ABSTRACT

The mechanisms triggering disuse muscle atrophy remain of debate. It is becoming evident that mitochondrial dysfunction may regulate pathways controlling muscle mass. We have recently shown that mitochondrial dysfunction plays a major role in disuse atrophy of soleus, a slow, oxidative muscle. Here we tested the hypothesis that hindlimb unloading-induced atrophy could be due to mitochondrial dysfunction in fast muscles too, notwithstanding their much lower mitochondrial content. Gastrocnemius displayed atrophy following both 3 and 7 days of unloading. SOD1 and catalase up-regulation, no H2 O2 accumulation and no increase of protein carbonylation suggest the antioxidant defence system efficiently reacted to redox imbalance in the early phases of disuse. A defective mitochondrial fusion (Mfn1, Mfn2 and OPA1 down-regulation) occurred together with an impairment of OXPHOS capacity. Furthermore, at 3 days of unloading higher acetyl-CoA carboxylase (ACC) phosphorylation was found, suggesting AMP-activated protein kinase (AMPK) pathway activation. To test the role of mitochondrial alterations we used Tg-mice overexpressing PGC-1α because of the known effect of PGC-1α on stimulation of Mfn2 expression. PGC-α overexpression was sufficient to prevent (i) the decrease of pro-fusion proteins (Mfn1, Mfn2 and OPA1), (ii) activation of the AMPK pathway, (iii) the inducible expression of MuRF1 and atrogin1 and of authopagic factors, and (iv) any muscle mass loss in response to disuse. As the effects of increased PGC-1α activity were sustained throughout disuse, compounds inducing PGC-1α expression could be useful to treat and prevent muscle atrophy also in fast muscles.

摘要

关键点

骨骼肌萎缩是废用的结果。尽管多项研究已证实蛋白质合成减少和蛋白质降解增加会导致肌肉萎缩,但对于这些过程背后的触发因素知之甚少。越来越多的证据对氧化应激作为废用性萎缩的触发因素提出了挑战;此外,线粒体功能障碍在决定肌肉萎缩中可能起因果作用这一点也日益明显。线粒体融合和裂变已成为控制线粒体功能的重要过程,而PGC-1α可能调节融合/裂变事件。尽管大多数关于小鼠的研究都集中在抗重力的慢肌比目鱼肌上,因为它优先受到废用性萎缩的影响,但一些快肌(包括腓肠肌)在卸载后也会出现明显的质量损失。我们发现,在快肌中,通过伴随的AMP激活蛋白激酶(AMPK)激活,促融合蛋白的早期下调可激活分解代谢系统,并最终导致废用性肌肉质量损失。肌肉中升高的PGC-1α通过防止促融合蛋白表达下降、AMPK和分解代谢系统激活,完全保留了肌肉质量,这表明诱导PGC-1α表达的化合物可能有助于治疗和预防肌肉萎缩。

摘要

触发废用性肌肉萎缩的机制仍存在争议。线粒体功能障碍可能调节控制肌肉质量的途径这一点日益明显。我们最近表明,线粒体功能障碍在比目鱼肌(一种慢氧化肌)的废用性萎缩中起主要作用。在这里,我们测试了一个假设,即后肢卸载诱导的萎缩也可能是由于快肌中的线粒体功能障碍,尽管它们的线粒体含量要低得多。卸载3天和7天后,腓肠肌均出现萎缩。超氧化物歧化酶1(SOD1)和过氧化氢酶上调,无H2O2积累且蛋白质羰基化无增加,这表明抗氧化防御系统在废用的早期阶段有效地应对了氧化还原失衡。线粒体融合缺陷(Mfn1、Mfn2和OPA1下调)与氧化磷酸化能力受损同时发生。此外,在卸载3天时发现较高的乙酰辅酶A羧化酶(ACC)磷酸化,表明AMP激活蛋白激酶(AMPK)途径被激活。为了测试线粒体改变的作用,我们使用了过表达PGC-1α的转基因小鼠,因为已知PGC-1α对刺激Mfn2表达有作用。PGC-α过表达足以防止(i)促融合蛋白(Mfn1、Mfn2和OPA1)减少,(ii)AMPK途径激活,(iii)肌肉特异性泛素连接酶1(MuRF1)和atrogin1以及自噬因子的诱导表达,以及(iv)对废用的任何肌肉质量损失。由于PGC-1α活性增加的影响在整个废用过程中持续存在,诱导PGC-1α表达的化合物也可能有助于治疗和预防快肌中的肌肉萎缩。

相似文献

引用本文的文献

1
Cancer Cachexia.癌症恶病质
Adv Exp Med Biol. 2025;1478:285-314. doi: 10.1007/978-3-031-88361-3_12.
2
Mitochondrial Biogenesis in Skeletal Muscle.骨骼肌中的线粒体生物合成
Adv Exp Med Biol. 2025;1478:19-50. doi: 10.1007/978-3-031-88361-3_2.

本文引用的文献

2
Disuse-induced muscle wasting.废用性肌肉萎缩。
Int J Biochem Cell Biol. 2013 Oct;45(10):2200-8. doi: 10.1016/j.biocel.2013.06.011. Epub 2013 Jun 22.
4
Cellular and molecular mechanisms of muscle atrophy.肌肉萎缩的细胞和分子机制。
Dis Model Mech. 2013 Jan;6(1):25-39. doi: 10.1242/dmm.010389.
8
Oxidative stress and disuse muscle atrophy: cause or consequence?氧化应激与废用性肌肉萎缩:原因还是结果?
Curr Opin Clin Nutr Metab Care. 2012 May;15(3):240-5. doi: 10.1097/MCO.0b013e328352b4c2.
10
Redox homeostasis, oxidative stress and disuse muscle atrophy.氧化还原平衡、氧化应激与废用性肌肉萎缩。
J Physiol. 2011 May 1;589(Pt 9):2147-60. doi: 10.1113/jphysiol.2010.203232. Epub 2011 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验