Giannini Norberto Pedro
Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Tucumán, Argentina; Universidad Nacional de Tucumán, Facultad de Ciencias Naturales e Instituto Miguel Lillo, San Miguel de Tucumán, Tucumán, Argentina; Department of Mammalogy, American Museum of Natural History, New York, New York.
J Exp Zool B Mol Dev Evol. 2014 Dec;322(8):558-66. doi: 10.1002/jez.b.22588. Epub 2014 Aug 8.
Following the embryonic period of organogenesis, most development is allometric growth, which is thought to produce most of the evolutionary morphological divergence between related species. Bivariate or multivariate coefficients of allometry are used to describe quantitative developmental data and are comparable across taxa; as such, these coefficients are amenable to direct treatment in a phylogenetic framework. Mapping of actual allometric coefficients onto phylogenetic trees is supported on the basis of the evolving nature of growth programs and the type of character (continuous) that they represent. This procedure depicts evolutionary allometry accurately and allows for the generation of reliable reconstructions of ancestral allometry, as shown here with a previously published case study on rodent cranial ontogeny. Results reconstructed the signature allometric patterns of rodents to the root of the phylogeny, which could be traced back into a (minimum) Paleocene age. Both character and statistical dependence need to be addressed, so this approach can be integrated with phylogenetic comparative methods that deal with those issues. It is shown that, in this particular sample of rodents, common ancestry explains little allometric variation given the level of divergence present within, and convergence between, major rodent lineages. Furthermore, all that variation is independent of body mass. Thus, from an evolutionary perspective, allometry appears to have a strong functional and likely adaptive basis.
在器官发生的胚胎期之后,大多数发育是异速生长,这被认为产生了相关物种之间大部分的进化形态差异。异速生长的双变量或多变量系数用于描述定量发育数据,并且在不同分类群之间具有可比性;因此,这些系数适合在系统发育框架中进行直接处理。基于生长程序的进化性质及其所代表的性状类型(连续的),将实际的异速生长系数映射到系统发育树上是可行的。这一过程准确地描绘了进化异速生长,并能够生成可靠的祖先异速生长重建,正如这里一个先前发表的关于啮齿动物颅骨个体发育的案例研究所示。结果将啮齿动物的标志性异速生长模式重建到了系统发育树的根部,这可以追溯到(至少)古新世时期。性状和统计依赖性都需要加以考虑,因此这种方法可以与处理这些问题的系统发育比较方法相结合。结果表明,在这个特定的啮齿动物样本中,考虑到主要啮齿动物谱系内部的差异程度以及它们之间的趋同情况,共同祖先对异速生长变异的解释力很小。此外,所有这些变异都与体重无关。因此,从进化的角度来看,异速生长似乎有很强的功能基础并且可能具有适应性。