Suppr超能文献

利用时域中的块扩展改进拉格朗日块匹配方法的跟踪性能:计算机模拟、体模和体内评估。

Improved tracking performance of Lagrangian block-matching methodologies using block expansion in the time domain: in silico, phantom and in vivo evaluations.

作者信息

Albinsson John, Brorsson Sofia, Ahlgren Asa Rydén, Cinthio Magnus

机构信息

Department of Biomedical Engineering, Lund University, Lund, Sweden.

School of Business and Engineering, PRODEA Research Group, Halmstad University, Halmstad, Sweden; Health and Welfare, Dala Sports Academy, Dalarna University, Falun, Sweden.

出版信息

Ultrasound Med Biol. 2014 Oct;40(10):2508-20. doi: 10.1016/j.ultrasmedbio.2014.05.010. Epub 2014 Aug 15.

Abstract

The aim of this study was to evaluate tracking performance when an extra reference block is added to a basic block-matching method, where the two reference blocks originate from two consecutive ultrasound frames. The use of an extra reference block was evaluated for two putative benefits: (i) an increase in tracking performance while maintaining the size of the reference blocks, evaluated using in silico and phantom cine loops; (ii) a reduction in the size of the reference blocks while maintaining the tracking performance, evaluated using in vivo cine loops of the common carotid artery where the longitudinal movement of the wall was estimated. The results indicated that tracking accuracy improved (mean = 48%, p < 0.005 [in silico]; mean = 43%, p < 0.01 [phantom]), and there was a reduction in size of the reference blocks while maintaining tracking performance (mean = 19%, p < 0.01 [in vivo]). This novel method will facilitate further exploration of the longitudinal movement of the arterial wall.

摘要

本研究的目的是评估在基本块匹配方法中添加一个额外参考块时的跟踪性能,其中两个参考块源自两个连续的超声帧。对添加额外参考块的使用评估了两个假定的益处:(i)在保持参考块大小的同时提高跟踪性能,使用计算机模拟和体模电影环进行评估;(ii)在保持跟踪性能的同时减小参考块的大小,使用颈总动脉的体内电影环进行评估,其中估计了血管壁的纵向运动。结果表明,跟踪准确性提高(计算机模拟中均值 = 48%,p < 0.005;体模中均值 = 43%,p < 0.01),并且在保持跟踪性能的同时参考块大小减小(体内均值 = 19%,p < 0.01)。这种新方法将有助于进一步探索动脉壁的纵向运动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验