Suppr超能文献

动态块匹配法评估 B 型超声序列中颈动脉壁密集运动场的纵向分量 - 与冠状动脉疾病的关系。

Dynamic Block Matching to assess the longitudinal component of the dense motion field of the carotid artery wall in B-mode ultrasound sequences - Association with coronary artery disease.

机构信息

Imaging-based Computational Biomedicine Lab, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.

Computer Aided Medical Procedures, Technische Universität München, Boltzmannstraße 3, 85748, Garching, Germany.

出版信息

Med Phys. 2018 Nov;45(11):5041-5053. doi: 10.1002/mp.13186. Epub 2018 Oct 23.

Abstract

PURPOSE

The motion of the common carotid artery tissue layers along the vessel axis during the cardiac cycle, observed in ultrasound imaging, is associated with the presence of established cardiovascular risk factors. However, the vast majority of the (semi-)automatic methods devised to measure this so-called "longitudinal kinetics" phenomenon are based on the tracking of a single point, thus failing to capture the overall - and potentially inhomogeneous - motion of the entire arterial wall. The aim of this work is to introduce a motion tracking a framework to simultaneously extract the temporal trajectory of a large collection of points (several hundred) horizontally aligned and spanning the entire exploitable width of the image, thus providing a dense motion field.

METHOD

The only action required from the user is to indicate the left and right borders of the region to be processed. A previously validated contour segmentation method is used to position one point in the arterial wall in each column of the image. Between two consecutive frames, the radial motion of each point is predetermined by the position of the segmentation contours. The longitudinal motion, which is the main focus of the present work, is determined in two steps. First, a series of independent block matching operations are carried out for all the tracked points. Here, the displacement of each point is not determined yet, instead the similarity map is stored. Then, an original dynamic-programming approach is exploited to regularize the collection of similarity maps and estimate the globally optimal motion over the entire vessel wall. Sixty-two atherosclerotic participants at high cardiovascular risk were involved in this study. Method training and validation was performed with 20 and 42 participants, respectively. The amplitude-independent index σX was introduced to quantitate the motion inhomogeneity across the length of the artery.

RESULTS

A dense displacement field, describing the longitudinal motion of the carotid far wall over time, was extracted from all participants. For each cine-loop, the method was evaluated against manual reference tracings performed on three local points, and showed a good accuracy, with an average absolute error (± STD) of 150 (±163) μm. It also demonstrated an overall greater robustness compared to a previously validated method based on single-point motion tracking. For all the 62 participants, the analyzed region had, in average, a width of 24.2 mm, involving the simultaneous tracking of 357 points along 151 temporal frames, and requiring a total computational time of 68 s. Analyzing the inhomogeneity of the carotid artery motion showed a strong correlation between σX and the presence of coronary artery disease (β-coefficient = 0.586, P = 0.003).

CONCLUSIONS

To the best of our knowledge, this is the first time that a method is specifically proposed to assess the dense motion field corresponding to the longitudinal kinetics of the carotid far wall. This approach has potential to evaluate the homogeneity (or lack thereof) of the wall dynamics. The proposed method has promising performances to improve the analysis of arterial longitudinal motion and the understanding of the underlying patho-physiological parameters.

摘要

目的

在超声成像中观察到,沿血管轴的颈总动脉组织层在心动周期中的运动与已确立的心血管危险因素有关。然而,绝大多数用于测量这种所谓的“纵向动力学”现象的(半自动)方法都是基于对单个点的跟踪,因此无法捕捉整个动脉壁的整体运动(可能不均匀)。本研究的目的是引入一种运动跟踪框架,以同时提取大量(数百个)水平排列并跨越图像可利用宽度的点的时间轨迹,从而提供密集的运动场。

方法

用户只需执行的操作是指示要处理的区域的左右边界。使用经过验证的轮廓分割方法在图像的每列中定位动脉壁中的一个点。在连续两帧之间,每个点的径向运动由分割轮廓的位置预先确定。本工作的主要重点是纵向运动,它分两步确定。首先,对所有跟踪点执行一系列独立的块匹配操作。在这里,每个点的位移尚未确定,而是存储相似性图。然后,利用原始的动态规划方法来正则化相似图的集合,并估计整个血管壁的全局最优运动。这项研究涉及了 62 名处于高心血管风险的动脉粥样硬化患者。方法的训练和验证分别使用了 20 名和 42 名参与者。引入了幅度无关的指数σX来量化动脉长度上的运动不均匀性。

结果

从所有参与者中提取了描述颈动脉远壁随时间纵向运动的密集位移场。对于每个电影循环,将该方法与在三个局部点上手动参考跟踪进行了比较评估,结果表明其具有良好的准确性,平均绝对误差(±STD)为 150(±163)μm。与基于单点运动跟踪的先前验证方法相比,它还表现出整体更高的鲁棒性。对于所有 62 名参与者,分析区域的平均宽度为 24.2mm,同时沿 151 个时间帧跟踪 357 个点,总计算时间为 68s。分析颈动脉运动的不均匀性表明,σX与冠状动脉疾病的存在之间存在很强的相关性(β系数=0.586,P=0.003)。

结论

据我们所知,这是首次专门提出一种方法来评估颈动脉远壁纵向动力学的密集运动场。该方法具有评估壁动力学均匀性(或缺乏均匀性)的潜力。该方法具有提高动脉纵向运动分析和理解潜在病理生理参数的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验