Department of Physics, Purdue University , 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States.
J Am Chem Soc. 2014 Aug 27;136(34):11938-45. doi: 10.1021/ja506586b. Epub 2014 Aug 18.
Modern chemistry's grand challenge is to significantly improve catalysts for water splitting. Further progress requires detailed spectroscopic and computational characterization of catalytic mechanisms. We analyzed one of the most studied homogeneous single-site Ru catalysts, Ru(II)(bpy)(tpy)H2O (where bpy = 2,2'-bipyridine, tpy = 2,2';6',2″-terpyridine). Our results reveal that the Ru(V)(bpy)(tpy)═O intermediate, reportedly detected in catalytic mixtures as a rate-limiting intermediate in water activation, is not present as such. Using a combination of electron paramagnetic resonance (EPR) and X-ray absorption spectroscopy, we demonstrate that 95% of the Ru complex in the catalytic steady state is of the form Ru(IV)(bpy)(tpy)═O. Ru(V)(bpy)(tpy)═O was not observed, and according to density functional theory (DFT) analysis, it might be thermodynamically inaccessible at our experimental conditions. A reaction product with unique EPR spectrum was detected in reaction mixtures at about 5% and assigned to Ru(III)-peroxo species with (-OOH or -OO- ligands). We also analyzed the Ru(II)(bpy)(tpy)Cl catalyst precursor and confirmed that this molecule is not a catalyst and its oxidation past Ru(III) state is impeded by a lack of proton-coupled electron transfer. Ru-Cl exchange with water is required to form active catalysts with the Ru-H2O fragment. Ru(II)(bpy)(tpy)H2O is the simplest representative of a larger class of water oxidation catalysts with neutral, nitrogen containing heterocycles. We expect this class of catalysts to work mechanistically in a similar fashion via Ru(IV)(bpy)(tpy)═O intermediate unless more electronegative (oxygen containing) ligands are introduced in the Ru coordination sphere, allowing the formation of more oxidized Ru(V) intermediate.
现代化学的重大挑战是显著改善水分解的催化剂。进一步的进展需要对催化机制进行详细的光谱和计算表征。我们分析了最受研究的均相单原子 Ru 催化剂之一,Ru(II)(bpy)(tpy)H2O(其中 bpy = 2,2'-联吡啶,tpy = 2,2';6',2″-三联吡啶)。我们的结果表明,Ru(V)(bpy)(tpy)═O中间体,据报道在催化混合物中作为水激活的限速中间体被检测到,并不以这种形式存在。我们使用电子顺磁共振(EPR)和 X 射线吸收光谱的组合,证明在催化稳态下 95%的 Ru 配合物的形式为Ru(IV)(bpy)(tpy)═O。未观察到Ru(V)(bpy)(tpy)═O,根据密度泛函理论(DFT)分析,在我们的实验条件下,它可能在热力学上无法接近。在反应混合物中检测到具有独特 EPR 光谱的反应产物,约占 5%,并分配给 Ru(III)-过氧物种,带有(-OOH 或-OO-配体)。我们还分析了Ru(II)(bpy)(tpy)Cl催化剂前体,并证实该分子不是催化剂,并且其氧化超过 Ru(III)状态受到质子耦合电子转移缺乏的阻碍。与水的 Ru-Cl 交换是形成具有 Ru-H2O 片段的活性催化剂所必需的。Ru(II)(bpy)(tpy)H2O是带有中性含氮杂环的更大类水氧化催化剂的最简单代表。我们期望这类催化剂通过Ru(IV)(bpy)(tpy)═O中间体以类似的方式发挥作用,除非在 Ru 配位体中引入更具电负性(含氧)的配体,允许形成更氧化的 Ru(V)中间体。