Suppr超能文献

用于定量纵向研究的3D时间飞跃磁共振血管造影数据集对齐:刚性配准技术评估

Aligning 3D time-of-flight MRA datasets for quantitative longitudinal studies: evaluation of rigid registration techniques.

作者信息

Verleger Tobias, Schönfeld Michael, Säring Dennis, Siemonsen Susanne, Fiehler Jens, Forkert Nils Daniel

机构信息

Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.

Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.

出版信息

Magn Reson Imaging. 2014 Dec;32(10):1390-5. doi: 10.1016/j.mri.2014.08.011. Epub 2014 Aug 15.

Abstract

OBJECTIVE

3D Time-of-flight (TOF) magnetic resonance angiography is commonly used for vascular analyses. A quantification of longitudinal morphological changes usually requires the registration of TOF image sequences acquired at different time points. The aim of this study was to evaluate the precision of different 3D rigid registration setups such that an optimal quantification of morphological changes can be achieved.

METHODS

Eight different rigid registration techniques were implemented and evaluated in this study using the target registration error (TRE) calculated based on 554 landmarks defined in twenty TOF datasets. The registration techniques differed in integration of brain and vessel segmentation masks and usage of a multi-resolution framework. Furthermore, the benefit of a prior volume-of-interest definition for registration accuracy was evaluated.

RESULTS

The results revealed that the highest registration accuracies can be achieved using a multi-resolution framework and a cerebrovascular segmentation as mask. Numerically, a mean TRE of 1.1mm was calculated. If applicable, a prior definition of a volume-of-interest allows a reduction of the TRE to only 0.6mm.

CONCLUSION

TOF datasets should be registered using vessel segmentations as mask, multi-resolution framework and previous volume-of-interest definition if possible to obtain the highest registration precision. This is especially the case for longitudinal datasets that are separated by several months while the registration technique seems less important for datasets that are only separated by a few days.

摘要

目的

三维时间飞跃(TOF)磁共振血管造影常用于血管分析。纵向形态变化的量化通常需要对在不同时间点采集的TOF图像序列进行配准。本研究的目的是评估不同三维刚性配准设置的精度,以便能够实现形态变化的最佳量化。

方法

本研究采用基于二十个TOF数据集中定义的554个地标计算的目标配准误差(TRE),实施并评估了八种不同的刚性配准技术。配准技术在脑和血管分割掩码的整合以及多分辨率框架的使用方面存在差异。此外,还评估了先验感兴趣体积定义对配准精度的益处。

结果

结果显示,使用多分辨率框架和脑血管分割作为掩码可实现最高的配准精度。从数值上看,计算出的平均TRE为1.1毫米。如果适用,先验定义感兴趣体积可将TRE降低至仅0.6毫米。

结论

TOF数据集应使用血管分割作为掩码、多分辨率框架以及如有可能的先前感兴趣体积定义进行配准,以获得最高的配准精度。对于间隔数月的纵向数据集尤其如此,而对于仅间隔几天的数据集,配准技术似乎不太重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验