Passat N, Ronse C, Baruthio J, Armspach J-P, Maillot C
Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection (LSIIT), UMR 7005 CNRS-ULP, Bd S. Brant, BP 10413, F-67412 Illkirch Cedex, .
Med Image Anal. 2006 Apr;10(2):259-74. doi: 10.1016/j.media.2005.11.002. Epub 2006 Jan 4.
Magnetic resonance angiography (MRA) has become a common way to study cerebral vascular structures. Indeed, it enables to obtain information on flowing blood in a totally non-invasive and non-irradiant fashion. MRA exams are generally performed for three main applications: detection of vascular pathologies, neurosurgery planning, and vascular landmark detection for brain functional analysis. This large field of applications justifies the necessity to provide efficient vessel segmentation tools. Several methods have been proposed during the last fifteen years. However, the obtained results are still not fully satisfying. A solution to improve brain vessel segmentation from MRA data could consist in integrating high-level a priori knowledge in the segmentation process. A preliminary attempt to integrate such knowledge is proposed here. It is composed of two methods devoted to phase contrast MRA (PC MRA) data. The first method is a cerebral vascular atlas creation process, composed of three steps: knowledge extraction, registration, and data fusion. Knowledge extraction is performed using a vessel size determination algorithm based on skeletonization, while a topology preserving non-rigid registration method is used to fuse the information into the atlas. The second method is a segmentation process involving adaptive sets of gray-level hit-or-miss operators. It uses anatomical knowledge modeled by the cerebral vascular atlas to adapt the parameters of these operators (number, size, and orientation) to the searched vascular structures. These two methods have been tested by creating an atlas from a 18 MRA database, and by using it to segment 30 MRA images, comparing the results to those obtained from a region-growing segmentation method.
磁共振血管造影(MRA)已成为研究脑血管结构的常用方法。事实上,它能够以完全非侵入性和非辐射的方式获取有关流动血液的信息。MRA检查通常用于三个主要应用:血管病变检测、神经外科手术规划以及用于脑功能分析的血管标志检测。如此广泛的应用领域证明了提供高效血管分割工具的必要性。在过去的十五年中已经提出了几种方法。然而,所获得的结果仍然不能完全令人满意。一种从MRA数据改进脑血管分割的解决方案可能在于在分割过程中整合高级先验知识。这里提出了一种整合此类知识的初步尝试。它由两种用于相位对比MRA(PC MRA)数据的方法组成。第一种方法是脑血管图谱创建过程,由三个步骤组成:知识提取、配准和数据融合。知识提取使用基于骨架化的血管大小确定算法进行,而使用一种保持拓扑结构的非刚性配准方法将信息融合到图谱中。第二种方法是一个分割过程,涉及自适应的灰度击中-击不中算子集。它使用由脑血管图谱建模的解剖学知识来使这些算子的参数(数量、大小和方向)适应所搜索的血管结构。通过从18个MRA数据库创建一个图谱,并使用它对30幅MRA图像进行分割,将结果与从区域生长分割方法获得的结果进行比较,对这两种方法进行了测试。