Suppr超能文献

晚期卵巢癌患者细胞减灭术结局的放射学预测指标

Radiological predictors of cytoreductive outcomes in patients with advanced ovarian cancer.

作者信息

Borley J, Wilhelm-Benartzi C, Yazbek J, Williamson R, Bharwani N, Stewart V, Carson I, Hird E, McIndoe A, Farthing A, Blagden S, Ghaem-Maghami S

机构信息

Department of Surgery and Cancer, Imperial College London, London, UK.

West London Gynaecology Cancer Centre, Imperial College NHS Trust, London, UK.

出版信息

BJOG. 2015 May;122(6):843-849. doi: 10.1111/1471-0528.12992. Epub 2014 Aug 5.

Abstract

OBJECTIVE

To assess site of disease on preoperative computed tomography (CT) to predict surgical debulking in patients with ovarian cancer.

DESIGN

Two-phase retrospective cohort study.

SETTING

West London Gynaecological Cancer Centre, UK.

POPULATION

Women with stage 3 or 4, ovarian, fallopian or primary peritoneal cancer undergoing cytoreductive surgery.

METHODS

Preoperative CT images were reviewed by experienced radiologists to assess the presence or absence of disease at predetermined sites. Multivariable stepwise logistic regression models determined sites of disease which were significantly associated with surgical outcomes in the test (n = 111) and validation (n = 70) sets.

MAIN OUTCOME MEASURES

Sensitivity and specificity of CT in predicting surgical outcome.

RESULTS

Stepwise logistic regression identified that the presence of lung metastasis, pleural effusion, deposits on the large-bowel mesentery and small-bowel mesentery, and infrarenal para-aortic nodes were associated with debulking status. Logistic regression determined a surgical predictive score which was able to significantly predict suboptimal debulking (n = 94, P = 0.0001) with an area under the curve (AUC) of 0.749 (95% confidence interval [95% CI]: 0.652, 0.846) and a sensitivity of 69.2%, specificity of 71.4%, positive predictive value of 75.0% and negative predictive value of 65.2%. These results remained significant in a recent validation set. There was a significant difference in residual disease volume in the test and validation sets (P < 0.001) in keeping with improved optimal debulking rates.

CONCLUSIONS

The presence of disease at some sites on preoperative CT scan is significantly associated with suboptimal debulking and may be an indication for a change in surgical planning.

摘要

目的

评估术前计算机断层扫描(CT)上的疾病部位,以预测卵巢癌患者的手术减瘤情况。

设计

两阶段回顾性队列研究。

地点

英国西伦敦妇科癌症中心。

研究对象

接受细胞减灭术的3期或4期卵巢癌、输卵管癌或原发性腹膜癌女性患者。

方法

由经验丰富的放射科医生回顾术前CT图像,评估预定部位是否存在疾病。多变量逐步逻辑回归模型确定了在测试组(n = 111)和验证组(n = 70)中与手术结果显著相关的疾病部位。

主要观察指标

CT预测手术结果的敏感性和特异性。

结果

逐步逻辑回归显示,肺转移、胸腔积液、大肠系膜和小肠系膜上的沉积物以及肾下主动脉旁淋巴结的存在与减瘤状态相关。逻辑回归确定了一个手术预测评分,该评分能够显著预测减瘤不充分(n = 94,P = 0.0001),曲线下面积(AUC)为0.749(95%置信区间[95%CI]:0.652,0.846),敏感性为69.2%,特异性为71.4%,阳性预测值为75.0%,阴性预测值为65.2%。这些结果在最近的验证组中仍然显著。测试组和验证组的残留疾病体积存在显著差异(P < 0.001),这与最佳减瘤率的提高一致。

结论

术前CT扫描某些部位存在疾病与减瘤不充分显著相关,可能提示手术计划需要改变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验