Suppr超能文献

一种基于混合小波变换的短期风速预测方法。

A hybrid wavelet transform based short-term wind speed forecasting approach.

作者信息

Wang Jujie

机构信息

School of Economics and Management, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China.

出版信息

ScientificWorldJournal. 2014;2014:914127. doi: 10.1155/2014/914127. Epub 2014 Jul 21.

Abstract

It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy.

摘要

提高风速预测的准确性对于风电场管理和风力发电利用至关重要。本文提出了一种名为WTT-TNN的新型混合方法用于风速预测。在该方法的第一步中,使用小波变换技术(WTT)将风速分解为一个近似尺度和几个细节尺度。在第二步中,使用双隐层神经网络(TNN)分别预测近似尺度和细节尺度。为了找到最优的网络结构,采用偏自相关函数来确定输入层神经元的数量,并通过实验模拟来确定TNN建模过程中每个隐层内神经元的数量。之后,通过这些预测结果的总和可得到最终预测值。在本研究中,采用WTT来提取风速的这些不同模式,以便于进行预测。为了评估所提方法的性能,将其应用于预测中国河西走廊的风速。四种不同情况下的仿真结果表明,所提方法提高了风速预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/4129147/6fff9f2eaa41/TSWJ2014-914127.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验