Suppr超能文献

黑皮质素信号在雄性不可控糖尿病大鼠瘦素的神经内分泌和代谢作用中的作用。

Role of melanocortin signaling in neuroendocrine and metabolic actions of leptin in male rats with uncontrolled diabetes.

机构信息

Diabetes and Obesity Center of Excellence (T.H.M., M.E.M.,. V.D., A.C., G.J.M.), Department of Medicine, University of Washington, Seattle, Washington 98109; and Division of Endocrinology (S.C.C.), Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461.

出版信息

Endocrinology. 2014 Nov;155(11):4157-67. doi: 10.1210/en.2014-1169. Epub 2014 Aug 19.

Abstract

Although the antidiabetic effects of leptin require intact neuronal melanocortin signaling in rodents with uncontrolled diabetes (uDM), increased melanocortin signaling is not sufficient to mimic leptin's glucose-lowering effects. The current studies were undertaken to clarify the role of melanocortin signaling in leptin's ability to correct metabolic and neuroendocrine disturbances associated with uDM. To accomplish this, bilateral cannulae were implanted in the lateral ventricle of rats with streptozotocin-induced diabetes, and leptin was coinfused with varying doses of the melanocortin 3/4 receptor (MC3/4R) antagonist, SHU9119. An additional cohort of streptozotocin-induced diabetes rats received intracerebroventricular administration of either the MC3/4R agonist, melanotan-II, or its vehicle. Consistent with previous findings, leptin's glucose-lowering effects were blocked by intracerebroventricular SHU9119. In contrast, leptin-mediated suppression of hyperglucagonemia involves both melanocortin dependent and independent mechanisms, and the degree of glucagon inhibition was associated with reduced plasma ketone body levels. Increased central nervous system melanocortin signaling alone fails to mimic leptin's ability to correct any of the metabolic or neuroendocrine disturbances associated with uDM. Moreover, the inability of increased melanocortin signaling to lower diabetic hyperglycemia does not appear to be secondary to release of the endogenous MC3/4R inverse agonist, Agouti-related peptide (AgRP), because AgRP knockout mice did not show increased susceptibility to the antidiabetic effects of increased MC3/4R signaling. Overall, these data suggest that 1) AgRP is not a major driver of diabetic hyperglycemia, 2) mechanisms independent of melanocortin signaling contribute to leptin's antidiabetic effects, and 3) melanocortin receptor blockade dissociates leptin's glucose-lowering effect from its action on other features of uDM, including reversal of hyperglucagonemia and ketosis, suggesting that brain control of ketosis, but not blood glucose levels, is glucagon dependent.

摘要

虽然瘦素在未控制糖尿病(uDM)的啮齿动物中的抗糖尿病作用需要完整的神经元黑皮质素信号,但增加黑皮质素信号不足以模拟瘦素的降血糖作用。本研究旨在阐明黑皮质素信号在瘦素纠正与 uDM 相关的代谢和神经内分泌紊乱中的作用。为了实现这一目标,在链脲佐菌素诱导的糖尿病大鼠的侧脑室中植入双侧套管,并将瘦素与不同剂量的黑皮质素 3/4 受体(MC3/4R)拮抗剂 SHU9119 共输注。另一组链脲佐菌素诱导的糖尿病大鼠接受了 MC3/4R 激动剂,黑素细胞刺激素-II,或其载体的脑室内给药。与先前的发现一致,瘦素的降血糖作用被脑室内的 SHU9119 阻断。相比之下,瘦素介导的高血糖素抑制涉及黑皮质素依赖和非依赖机制,并且胰高血糖素抑制的程度与血浆酮体水平降低有关。中枢神经系统黑皮质素信号的增加本身并不能模拟瘦素纠正与 uDM 相关的任何代谢或神经内分泌紊乱的能力。此外,增加的黑皮质素信号不能降低糖尿病高血糖症的原因似乎不是内源性 MC3/4R 反向激动剂,Agouti 相关肽(AgRP)的释放,因为 AgRP 敲除小鼠对增加的 MC3/4R 信号的抗糖尿病作用没有增加的易感性。总体而言,这些数据表明:1)AgRP 不是糖尿病高血糖的主要驱动因素,2)独立于黑皮质素信号的机制有助于瘦素的抗糖尿病作用,3)黑皮质素受体阻断可将瘦素的降血糖作用与其对 uDM 其他特征的作用分离,包括高血糖素血症和酮症的逆转,表明大脑对酮症的控制,但不是血糖水平,依赖于胰高血糖素。

相似文献

1
Role of melanocortin signaling in neuroendocrine and metabolic actions of leptin in male rats with uncontrolled diabetes.
Endocrinology. 2014 Nov;155(11):4157-67. doi: 10.1210/en.2014-1169. Epub 2014 Aug 19.
2
Activation of the brain melanocortin system is required for leptin-induced modulation of chemorespiratory function.
Acta Physiol (Oxf). 2015 Apr;213(4):893-901. doi: 10.1111/apha.12394. Epub 2014 Sep 30.
5
Differential role of melanocortins in mediating leptin's central effects on feeding and reproduction.
Am J Physiol Regul Integr Comp Physiol. 2000 Jan;278(1):R50-9. doi: 10.1152/ajpregu.2000.278.1.R50.
6
Activation of the central melanocortin system contributes to the increased arterial pressure in obese Zucker rats.
Am J Physiol Regul Integr Comp Physiol. 2012 Mar 1;302(5):R561-7. doi: 10.1152/ajpregu.00392.2011. Epub 2011 Dec 28.
7
Control of appetite, blood glucose, and blood pressure during melanocortin-4 receptor activation in normoglycemic and diabetic NPY-deficient mice.
Am J Physiol Regul Integr Comp Physiol. 2018 Apr 1;314(4):R533-R539. doi: 10.1152/ajpregu.00293.2017. Epub 2017 Dec 20.
8
Xenin, a gastrointestinal peptide, regulates feeding independent of the melanocortin signaling pathway.
Diabetes. 2009 Jan;58(1):87-94. doi: 10.2337/db08-0260. Epub 2008 Nov 4.
9
Leptin action in the ventromedial hypothalamic nucleus is sufficient, but not necessary, to normalize diabetic hyperglycemia.
Endocrinology. 2013 Sep;154(9):3067-76. doi: 10.1210/en.2013-1328. Epub 2013 Jun 19.

引用本文的文献

1
Development and Characterization of a -Flp Mouse Model.
bioRxiv. 2025 Feb 25:2025.02.21.639566. doi: 10.1101/2025.02.21.639566.
2
Development and characterization of an Sf-1-Flp mouse model.
JCI Insight. 2025 Mar 4;10(8). doi: 10.1172/jci.insight.190105. eCollection 2025 Apr 22.
4
AgRP neurons: Regulators of feeding, energy expenditure, and behavior.
FEBS J. 2022 Apr;289(8):2362-2381. doi: 10.1111/febs.16176. Epub 2021 Sep 13.
5
A neural basis for brain leptin action on reducing type 1 diabetic hyperglycemia.
Nat Commun. 2021 May 11;12(1):2662. doi: 10.1038/s41467-021-22940-4.
9
Peripheral cannabinoid-1 receptor blockade restores hypothalamic leptin signaling.
Mol Metab. 2017 Oct;6(10):1113-1125. doi: 10.1016/j.molmet.2017.06.010. Epub 2017 Jun 24.
10
The Determinants of Leptin Levels in Diabetic and Nondiabetic Saudi Males.
Int J Endocrinol. 2017;2017:3506871. doi: 10.1155/2017/3506871. Epub 2017 Mar 1.

本文引用的文献

1
Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin.
Cell Metab. 2013 Sep 3;18(3):431-44. doi: 10.1016/j.cmet.2013.08.004.
2
Leptin action in the ventromedial hypothalamic nucleus is sufficient, but not necessary, to normalize diabetic hyperglycemia.
Endocrinology. 2013 Sep;154(9):3067-76. doi: 10.1210/en.2013-1328. Epub 2013 Jun 19.
3
In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue.
Am J Physiol Endocrinol Metab. 2013 Apr 1;304(7):E734-46. doi: 10.1152/ajpendo.00488.2012. Epub 2013 Feb 5.
5
Metabolic manifestations of insulin deficiency do not occur without glucagon action.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14972-6. doi: 10.1073/pnas.1205983109. Epub 2012 Aug 13.
7
Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice.
J Clin Invest. 2012 Mar;122(3):1000-9. doi: 10.1172/JCI59816. Epub 2012 Feb 13.
8
Central nervous control of energy and glucose balance: focus on the central melanocortin system.
Ann N Y Acad Sci. 2011 Dec;1243:1-14. doi: 10.1111/j.1749-6632.2011.06248.x.
9
Endogenous BDNF regulates inhibitory synaptic transmission in the ventromedial nucleus of the hypothalamus.
J Neurophysiol. 2012 Jan;107(1):42-9. doi: 10.1152/jn.00353.2011. Epub 2011 Oct 12.
10
Leptin and the central nervous system control of glucose metabolism.
Physiol Rev. 2011 Apr;91(2):389-411. doi: 10.1152/physrev.00007.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验