Suppr超能文献

全长杀虫蛋白Cry1Ac的结构揭示了毒素包装到体内形成晶体的有趣细节。

Structure of the full-length insecticidal protein Cry1Ac reveals intriguing details of toxin packaging into in vivo formed crystals.

作者信息

Evdokimov Artem G, Moshiri Farhad, Sturman Eric J, Rydel Timothy J, Zheng Meiying, Seale Jeffrey W, Franklin Sonya

机构信息

Monsanto, GG4D 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017.

出版信息

Protein Sci. 2014 Nov;23(11):1491-7. doi: 10.1002/pro.2536. Epub 2014 Sep 2.

Abstract

For almost half a century, the structure of the full-length Bacillus thuringiensis (Bt) insecticidal protein Cry1Ac has eluded researchers, since Bt-derived crystals were first characterized in 1965. Having finally solved this structure we report intriguing details of the lattice-based interactions between the toxic core of the protein and the protoxin domains. The structure provides concrete evidence for the function of the protoxin as an enhancer of native crystal packing and stability.

摘要

自1965年首次对苏云金芽孢杆菌(Bt)产生的晶体进行表征以来,近半个世纪里,全长Bt杀虫蛋白Cry1Ac的结构一直未被研究人员破解。在最终解析出该结构后,我们报告了该蛋白毒性核心与原毒素结构域之间基于晶格的相互作用的有趣细节。该结构为原毒素作为天然晶体堆积和稳定性增强剂的功能提供了确凿证据。

相似文献

3
Role of DNA in the activation of the Cry1A insecticidal crystal protein from Bacillus thuringiensis.
J Biol Chem. 1998 Apr 10;273(15):9292-6. doi: 10.1074/jbc.273.15.9292.
4
The role of β20-β21 loop structure in insecticidal activity of Cry1Ac toxin from Bacillus thuringiensis.
Curr Microbiol. 2011 Feb;62(2):665-70. doi: 10.1007/s00284-010-9760-9. Epub 2010 Sep 28.
5
Crystal structure of Bacillus thuringiensis Cry7Ca1 toxin active against Locusta migratoria manilensis.
Protein Sci. 2019 Mar;28(3):609-619. doi: 10.1002/pro.3561. Epub 2018 Dec 22.
6
Cry1Ac Protoxin and Its Activated Toxin from Act Differentially during the Pathogenic Process.
J Agric Food Chem. 2020 May 27;68(21):5816-5824. doi: 10.1021/acs.jafc.0c01172. Epub 2020 May 13.
7
The full-length Cry1Ac protoxin without proteolytic activation exhibits toxicity against insect cell line CF-203.
J Invertebr Pathol. 2018 Feb;152:25-29. doi: 10.1016/j.jip.2018.01.004. Epub 2018 Feb 3.
9
Structural and Functional Insights into the C-terminal Fragment of Insecticidal Vip3A Toxin of .
Toxins (Basel). 2020 Jul 5;12(7):438. doi: 10.3390/toxins12070438.

引用本文的文献

1
Structural changes upon membrane insertion of the insecticidal pore-forming toxins produced by .
Front Insect Sci. 2023 Apr 26;3:1188891. doi: 10.3389/finsc.2023.1188891. eCollection 2023.
2
Channel Formation in Cry Toxins: An Alphafold-2 Perspective.
Int J Mol Sci. 2023 Nov 27;24(23):16809. doi: 10.3390/ijms242316809.
3
Novel insecticidal proteins from ferns resemble insecticidal proteins from .
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2306177120. doi: 10.1073/pnas.2306177120. Epub 2023 Oct 23.
4
The role of glycoconjugates as receptors for insecticidal proteins.
FEMS Microbiol Rev. 2023 Jul 5;47(4). doi: 10.1093/femsre/fuad026.
5
Insect chaperones Hsp70 and Hsp90 cooperatively enhance toxicity of Cry1A toxins and counteract insect resistance.
Front Immunol. 2023 Apr 20;14:1151943. doi: 10.3389/fimmu.2023.1151943. eCollection 2023.
6
Whole genome sequencing of a novel Bacillus thuringiensis isolated from Assam soil.
BMC Microbiol. 2023 Mar 31;23(1):91. doi: 10.1186/s12866-023-02821-0.
8
Importance of Cry Proteins in Biotechnology: Initially a Bioinsecticide, Now a Vaccine Adjuvant.
Life (Basel). 2021 Sep 23;11(10):999. doi: 10.3390/life11100999.
9
How Does Crystallize Such a Large Diversity of Toxins?
Toxins (Basel). 2021 Jun 26;13(7):443. doi: 10.3390/toxins13070443.
10
Which Is Stronger? A Continuing Battle Between Cry Toxins and Insects.
Front Microbiol. 2021 Jun 1;12:665101. doi: 10.3389/fmicb.2021.665101. eCollection 2021.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection.
FEMS Microbiol Rev. 2013 Jan;37(1):3-22. doi: 10.1111/j.1574-6976.2012.00341.x. Epub 2012 Jun 11.
3
Bacillus thuringiensis: a century of research, development and commercial applications.
Plant Biotechnol J. 2011 Apr;9(3):283-300. doi: 10.1111/j.1467-7652.2011.00595.x. Epub 2011 Feb 25.
4
Recognition of the helical structure of beta-1,4-galactan by a new family of carbohydrate-binding modules.
J Biol Chem. 2010 Nov 12;285(46):35999-6009. doi: 10.1074/jbc.M110.166330. Epub 2010 Sep 8.
5
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
7
A structural basis for complement inhibition by Staphylococcus aureus.
Nat Immunol. 2007 Apr;8(4):430-7. doi: 10.1038/ni1450. Epub 2007 Mar 11.
8
Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis.
Peptides. 2007 Jan;28(1):169-73. doi: 10.1016/j.peptides.2006.06.013. Epub 2006 Dec 4.
9
Mode of action of mosquitocidal Bacillus thuringiensis toxins.
Toxicon. 2007 Apr;49(5):597-600. doi: 10.1016/j.toxicon.2006.11.008. Epub 2006 Nov 21.
10
Protein production by auto-induction in high density shaking cultures.
Protein Expr Purif. 2005 May;41(1):207-34. doi: 10.1016/j.pep.2005.01.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验