Pedersen Sune F, Ludvigsen Trine P, Johannesen Helle H, Löfgren Johan, Ripa Rasmus S, Hansen Adam E, Ettrup Anders J, Christoffersen Berit Ø, Pedersen Henrik D, Olsen Lisbeth H, Højgaard Liselotte, Kjær Andreas
Cluster for Molecular Imaging, University of Copenhagen; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen Copenhagen, Denmark.
Department of Veterinary Disease Biology, University of Copenhagen Frederiksberg, Denmark.
Am J Nucl Med Mol Imaging. 2014 Aug 15;4(5):448-58. eCollection 2014.
Novel hybrid 18-fluoro-deoxy-D-glucose ((18)F-FDG) based positron emission tomography (PET) and magnetic resonance imaging (MRI) has shown promise for characterization of atherosclerotic plaques clinically. The purpose of this study was to evaluate the method in a pre-clinical model of diet-induced atherosclerosis, based on the Göttingen minipig. Using (18)F-FDG PET/MRI the goal was to develop and create a new imaging method in an in vivo animal model for translational studies of atherosclerosis. We used a strategy of multisequence MRI for optimal anatomical imaging of the abdominal aortas of the pigs (n=4): T1-weighted turbo spin-echo (T1-TSE), T2-weighted turbo spin-echo (T2-TSE) and proton density imaging with and without fat saturation. (18)F-FDG PET emission data were collected from a single bed position of the abdominal aorta in 3D mode for either 10 (n=4) or 10 and 20 minutes (n=2) to measure glycolysis as given by standardized uptake values (SUV). Ex vivo en face evaluation of aortas from an atherosclerotic animal illustrated plaque distribution macroscopically, compared to a lean control animal. Although T2-TSE weighted imaging was most consistent, no one MRI sequence was preferable and superior to another for visualization and identification of the abdominal aorta. We found poor correlation between SUVs obtained from 10 and 20 minutes of reconstructed PET emission data. This can most likely be ascribed to intestinal movement. In conclusion multisequence MRI is recommended for optimal imaging of the abdominal aorta using MRI. Furthermore we found that 10 minutes of PET emission data seems adequate. This is the first study to demonstrate that the method of (18)F-FDG PET/MRI is feasible in minipig models of atherosclerosis, and therefore relevant in larger prospective studies. Perspectives of the method include correlation to e.g. aortic immunohistochemistry findings and a range of genomic and proteomic analyses.
基于新型混合18-氟脱氧-D-葡萄糖((18)F-FDG)的正电子发射断层扫描(PET)和磁共振成像(MRI)在临床上已显示出对动脉粥样硬化斑块进行特征描述的前景。本研究的目的是在基于哥廷根小型猪的饮食诱导动脉粥样硬化临床前模型中评估该方法。使用(18)F-FDG PET/MRI的目标是在体内动物模型中开发并创建一种用于动脉粥样硬化转化研究的新成像方法。我们采用多序列MRI策略对猪(n = 4)的腹主动脉进行最佳解剖成像:T1加权快速自旋回波(T1-TSE)、T2加权快速自旋回波(T2-TSE)以及有和没有脂肪抑制的质子密度成像。(18)F-FDG PET发射数据以3D模式从腹主动脉的单个床位采集,采集时间为10分钟(n = 4)或10分钟和20分钟(n = 2),以测量由标准化摄取值(SUV)给出的糖酵解情况。与瘦对照动物相比,对一只动脉粥样硬化动物的主动脉进行离体正面评估,宏观显示斑块分布。尽管T2-TSE加权成像最为一致,但对于腹主动脉的可视化和识别,没有一个MRI序列比另一个更优且更具优势。我们发现从10分钟和20分钟重建的PET发射数据获得的SUV之间相关性较差。这很可能归因于肠道蠕动。总之,推荐使用多序列MRI对腹主动脉进行最佳MRI成像。此外,我们发现10分钟的PET发射数据似乎就足够了。这是第一项证明(18)F-FDG PET/MRI方法在动脉粥样硬化小型猪模型中可行的研究,因此在更大规模的前瞻性研究中具有相关性。该方法的前景包括与例如主动脉免疫组织化学结果以及一系列基因组和蛋白质组分析的相关性。