Global Drug Discovery, Novo Nordisk Park, Novo Nordisk A/S, DK-2760, Måløv, Denmark.
Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
Atherosclerosis. 2019 Jun;285:55-63. doi: 10.1016/j.atherosclerosis.2019.04.209. Epub 2019 Apr 9.
The advantage of combining molecular and morphological imaging, e.g. positron emission tomography and magnetic resonance imaging (PET/MRI), is reflected in the increased use of these modalities as surrogate end-points in clinical trials. This study aimed at evaluating plaque inflammation using F-fluorodeoxyglucose (F-FDG)-PET/MRI, and gene expression in a minipig model of atherosclerosis.
Göttingen Minipigs were fed for 60 weeks with fat/fructose/cholesterol-rich diet (FFC), chow (Control) or FFC-diet changed to chow midway (diet normalization group; DNO). In all groups, F-FDG-PET/MRI of the abdominal aorta was assessed midway and at study-end. The aorta was analyzed using histology and gene expression.
At study-end, FFC had significantly higher FDG-uptake compared to Control (target-to-background maximal uptake, TBR (95% confidence interval) CI: 0.092; 7.32) and DNO showed significantly decreased uptake compared to FFC (CI: -5.94;-0.07). No difference was observed between DNO and Control (CI: -2.71; 4.11). FFC displayed increased atherosclerosis and gene expression of inflammatory markers, including vascular cell adhesion molecule 1 (VCAM-1), cluster of differentiation 68 (CD68), matrix metalloproteinase 9 (MMP9), cathepsin K (CTSK) and secreted phosphoprotein 1 (SPP1) compared to Control and DNO (all, p < 0.05). FDG-uptake correlated with gene expression of inflammatory markers, including CD68, ρ = 0.58; MMP9, ρ = 0.46; SPP1, ρ = 0.44 and CTSK, ρ = 0.49; (p ≤ 0.01 for all).
In a model of atherosclerosis, F-FDG-PET/MRI technology allows for detection of inflammation in atherosclerotic plaques, consistent with increased inflammatory gene expression. Our findings corroborate clinical data and are important in pre-clinical drug development targeting plaque inflammation.
将分子和形态成像(例如正电子发射断层扫描和磁共振成像(PET/MRI))相结合的优势在于,这些模态在临床试验中作为替代终点的使用越来越多。本研究旨在通过 F-氟脱氧葡萄糖(F-FDG)-PET/MRI 评估动脉粥样硬化小型猪模型中的斑块炎症和基因表达。
戈丁根小型猪喂食富含脂肪/果糖/胆固醇的饮食(FFC)60 周,喂食标准饮食(对照)或 FFC 饮食中途改为标准饮食(饮食正常化组;DNO)。在所有组中,均在中途和研究结束时评估腹部主动脉的 F-FDG-PET/MRI。使用组织学和基因表达分析主动脉。
在研究结束时,FFC 与对照相比,FDG 摄取显著增加(目标与背景最大摄取比,TBR(95%置信区间)CI:0.092;7.32),DNO 与 FFC 相比,摄取显著降低(CI:-5.94;-0.07)。DNO 与对照之间无差异(CI:-2.71;4.11)。FFC 与对照和 DNO 相比,动脉粥样硬化和炎症标志物基因表达增加,包括血管细胞黏附分子 1(VCAM-1)、分化群 68(CD68)、基质金属蛋白酶 9(MMP9)、组织蛋白酶 K(CTSK)和分泌型磷蛋白 1(SPP1)(均,p < 0.05)。FDG 摄取与炎症标志物基因表达相关,包括 CD68,ρ=0.58;MMP9,ρ=0.46;SPP1,ρ=0.44;CTSK,ρ=0.49;(所有 p≤0.01)。
在动脉粥样硬化模型中,F-FDG-PET/MRI 技术可检测动脉粥样硬化斑块中的炎症,与炎症基因表达增加一致。我们的发现与临床数据一致,对于靶向斑块炎症的临床前药物开发非常重要。