Suppr超能文献

用于离子聚合物-金属复合材料人工肌肉的纳米刺电极。

Nanothorn electrodes for ionic polymer-metal composite artificial muscles.

作者信息

Palmre Viljar, Pugal David, Kim Kwang J, Leang Kam K, Asaka Kinji, Aabloo Alvo

机构信息

1] Department of Chemical and Materials Engineering, University of Nevada, Reno, Nevada, U.S.A [2] Active Materials and Processing Laboratory, Department of Mechanical Engineering, University of Nevada, Reno, Nevada, U.S.A [3] Active Materials and Smart Living Laboratory, Department of Mechanical Engineering, University of Nevada, Las Vegas, Nevada, U.S.A.

Active Materials and Processing Laboratory, Department of Mechanical Engineering, University of Nevada, Reno, Nevada, U.S.A.

出版信息

Sci Rep. 2014 Aug 22;4:6176. doi: 10.1038/srep06176.

Abstract

Ionic polymer-metal composites (IPMCs) have recently received tremendous interest as soft biomimetic actuators and sensors in various bioengineering and human affinity applications, such as artificial muscles and actuators, aquatic propulsors, robotic end-effectors, and active catheters. Main challenges in developing biomimetic actuators are the attainment of high strain and actuation force at low operating voltage. Here we first report a nanostructured electrode surface design for IPMC comprising platinum nanothorn assemblies with multiple sharp tips. The newly developed actuator with the nanostructured electrodes shows a new way to achieve highly enhanced electromechanical performance over existing flat-surfaced electrodes. We demonstrate that the formation and growth of the nanothorn assemblies at the electrode interface lead to a dramatic improvement (3- to 5-fold increase) in both actuation range and blocking force at low driving voltage (1-3 V). These advances are related to the highly capacitive properties of nanothorn assemblies, increasing significantly the charge transport during the actuation process.

摘要

离子聚合物-金属复合材料(IPMCs)近来作为软仿生致动器和传感器在各种生物工程及人类亲和应用领域,如人造肌肉和致动器、水下推进器、机器人末端执行器以及有源导管等方面受到了极大关注。开发仿生致动器的主要挑战在于在低工作电压下实现高应变和驱动力。在此,我们首次报道了一种用于IPMC的纳米结构电极表面设计,该设计包含具有多个尖锐尖端的铂纳米刺组件。这种具有纳米结构电极的新开发致动器展示了一种在现有平面电极基础上实现高度增强的机电性能的新方法。我们证明,电极界面处纳米刺组件的形成和生长导致在低驱动电压(1 - 3 V)下致动范围和阻塞力都有显著提高(增加3至5倍)。这些进展与纳米刺组件的高电容特性有关,显著增加了致动过程中的电荷传输。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf6/4141252/2ab26697a640/srep06176-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验