Mustafa Syed Khalid, Alessa Ali Hamzah, S Alatawi Ibrahim Saleem, Hosny Al Dalaeen Jassim, Islam Maidul, Ahamed Mohd Imran
Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Zip, Tabuk, 71491, Saudi Arabia.
Department of Chemistry, Faculty of Science, Jarash University, P.O. Box 311, Jarash, 26110, Jordan.
Sci Rep. 2024 Oct 4;14(1):23059. doi: 10.1038/s41598-024-73006-6.
Ionic Polymer-Metal Composite (IPMC) actuators have garnered significant scientific attention in robotics and artificial muscles for their ability to operate at low voltage, high strain capacity, and lightweight construction. The lack of uniform bending in IPMC actuators undermines their control precision and restricts their range of potential applications. This study utilized the unique properties of nanoscale materials and Polyvinyl alcohol (PVA) to develop a membrane for soft robotic bending actuation. Subsequently, a platinum coating was applied to the membrane to mitigate the limitations of IPMCs in soft robotics applications. Herein, mechanized agitation was employed during the solution-casting process to enhance platinum metal (Pt-metal) coating on zinc oxide (ZnO) nanostructures within a PVA- sulphonated graphene oxide nanocomposite, achieving enhanced soft robotics bending actuation capabilities. The resultant membrane composed of sulphonated-graphene oxide and polyvinyl-zinc oxide coated with pt (PsGZ-Pt) was examined by exploring advanced analytical techniques such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction spectroscopy (XRD). Furthermore, the ionic exchange capacity (IEC), proton conductivity (PC), water uptake and water loss characteristics were evaluated to be 2.1 meq. g, 1.95 × 10 Scm, 59.62% at 45 °C and water loss at 9 min immersion found 38%, respectively. Electromechanical studies of the PsGZ-Pt membrane (size 30 mm length, 10 mm width, 0.07 mm thickness) showed an actuation force of 0.3253 mN and a displacement of roughly 22.8 mm at ± 3 VDC. These findings highlighted the PsGZ-Pt membrane's potential as a low-cost alternative to expensive commercial IPMC actuators based on polymers. These results presented a straightforward, low-cost approach for synthesizing PsGZ-Pt utilizing conventional technologies. The PsGZ-Pt membrane shows promise for generating low-cost, high-performance actuation materials with a wide range of industrial applications.
离子聚合物-金属复合材料(IPMC)致动器因其能够在低电压、高应变能力和轻质结构下运行,在机器人技术和人造肌肉领域引起了广泛的科学关注。IPMC致动器缺乏均匀弯曲,这削弱了其控制精度并限制了其潜在应用范围。本研究利用纳米级材料和聚乙烯醇(PVA)的独特性能,开发了一种用于软机器人弯曲驱动的膜。随后,在膜上涂覆铂涂层,以减轻IPMC在软机器人应用中的局限性。在此,在溶液浇铸过程中采用机械搅拌,以增强聚乙烯醇-磺化氧化石墨烯纳米复合材料中氧化锌(ZnO)纳米结构上的铂金属(Pt-金属)涂层,从而提高软机器人弯曲驱动能力。通过探索傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射光谱(XRD)等先进分析技术,对由磺化氧化石墨烯和涂有铂的聚乙烯醇-氧化锌组成的所得膜(PsGZ-Pt)进行了检测。此外,离子交换容量(IEC)、质子传导率(PC)、吸水率和失水特性分别评估为2.1 meq. g、1.95×10 Scm、45℃时为59.62%,浸泡9分钟时失水率为38%。对PsGZ-Pt膜(尺寸为30毫米长、10毫米宽、0.07毫米厚)的机电研究表明,在±3 VDC时,驱动力为0.3253 mN,位移约为22.8毫米。这些发现突出了PsGZ-Pt膜作为基于聚合物的昂贵商业IPMC致动器的低成本替代品的潜力。这些结果提出了一种利用传统技术合成PsGZ-Pt的简单、低成本方法。PsGZ-Pt膜有望生产出具有广泛工业应用的低成本、高性能驱动材料。