肌动蛋白中的R256H突变改变了Aip1p的动力学。
Aip1p dynamics are altered by the R256H mutation in actin.
作者信息
Pierick Alyson R, McKane Melissa, Wen Kuo-Kuang, Bartlett Heather L
机构信息
Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa.
Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa.
出版信息
J Vis Exp. 2014 Jul 30(89):e51551. doi: 10.3791/51551.
Mutations in actin cause a range of human diseases due to specific molecular changes that often alter cytoskeletal function. In this study, imaging of fluorescently tagged proteins using total internal fluorescence (TIRF) microscopy is used to visualize and quantify changes in cytoskeletal dynamics. TIRF microscopy and the use of fluorescent tags also allows for quantification of the changes in cytoskeletal dynamics caused by mutations in actin. Using this technique, quantification of cytoskeletal function in live cells valuably complements in vitro studies of protein function. As an example, missense mutations affecting the actin residue R256 have been identified in three human actin isoforms suggesting this amino acid plays an important role in regulatory interactions. The effects of the actin mutation R256H on cytoskeletal movements were studied using the yeast model. The protein, Aip1, which is known to assist cofilin in actin depolymerization, was tagged with green fluorescent protein (GFP) at the N-terminus and tracked in vivo using TIRF microscopy. The rate of Aip1p movement in both wild type and mutant strains was quantified. In cells expressing R256H mutant actin, Aip1p motion is restricted and the rate of movement is nearly half the speed measured in wild type cells (0.88 ± 0.30 μm/sec in R256H cells compared to 1.60 ± 0.42 μm/sec in wild type cells, p < 0.005).
肌动蛋白中的突变会因特定的分子变化导致一系列人类疾病,这些变化常常会改变细胞骨架的功能。在本研究中,使用全内反射荧光(TIRF)显微镜对荧光标记的蛋白质进行成像,以可视化和量化细胞骨架动力学的变化。TIRF显微镜和荧光标记的使用还能够对由肌动蛋白突变引起的细胞骨架动力学变化进行量化。利用这项技术,对活细胞中细胞骨架功能的量化为蛋白质功能的体外研究提供了有价值的补充。例如,在三种人类肌动蛋白异构体中发现了影响肌动蛋白残基R256的错义突变,这表明该氨基酸在调节相互作用中起着重要作用。使用酵母模型研究了肌动蛋白突变R256H对细胞骨架运动的影响。已知有助于丝切蛋白进行肌动蛋白解聚的蛋白质Aip1在N端用绿色荧光蛋白(GFP)标记,并在体内使用TIRF显微镜进行追踪。对野生型和突变型菌株中Aip1p的运动速率进行了量化。在表达R256H突变型肌动蛋白的细胞中,Aip1p的运动受到限制,运动速率几乎是野生型细胞中测量速率的一半(R256H细胞中为0.88±0.30μm/秒,而野生型细胞中为1.60±0.42μm/秒,p<0.005)。