IEEE Trans Cybern. 2015 Jun;45(6):1134-45. doi: 10.1109/TCYB.2014.2345791. Epub 2014 Aug 19.
In this paper, a new adaptive self-organizing map (SOM) with recurrent neural network (RNN) controller is proposed for task assignment and path evolution of missile defense system (MDS). We address the problem of N agents (defending missiles) and D targets (incoming missiles) in MDS. A new RNN controller is designed to force an agent (or defending missile) toward a target (or incoming missile), and a monitoring controller is also designed to reduce the error between RNN controller and ideal controller. A new SOM with RNN controller is then designed to dispatch agents to their corresponding targets by minimizing total damaging cost. This is actually an important application of the multiagent system. The SOM with RNN controller is the main controller. After task assignment, the weighting factors of our new SOM with RNN controller are activated to dispatch the agents toward their corresponding targets. Using the Lyapunov constraints, the weighting factors for the proposed SOM with RNN controller are updated to guarantee the stability of the path evolution (or planning) system. Excellent simulations are obtained using this new approach for MDS, which show that our RNN has the lowest average miss distance among the several techniques.
在本文中,提出了一种新的自适应自组织映射(SOM)与递归神经网络(RNN)控制器,用于导弹防御系统(MDS)的任务分配和路径演化。我们解决了在 MDS 中 N 个代理(防御导弹)和 D 个目标(来袭导弹)的问题。设计了一个新的 RNN 控制器,以迫使一个代理(或防御导弹)朝向一个目标(或来袭导弹),并设计了一个监控控制器,以减少 RNN 控制器和理想控制器之间的误差。然后,设计了一个带有 RNN 控制器的新 SOM,通过最小化总破坏成本来分配代理到其相应的目标。这实际上是多智能体系统的一个重要应用。具有 RNN 控制器的 SOM 是主控制器。任务分配后,我们的新 SOM 与 RNN 控制器的加权因子被激活,以将代理分配到相应的目标。利用 Lyapunov 约束,更新了所提出的 SOM 与 RNN 控制器的加权因子,以保证路径演化(或规划)系统的稳定性。该新方法在 MDS 中得到了很好的仿真结果,表明我们的 RNN 在几种技术中具有最低的平均脱靶距离。