Suppr超能文献

嗜酸硫化芽孢杆菌新鉴定出的耐热酯酶:邻苯二甲酸酯降解特性及性能

Newly identified thermostable esterase from Sulfobacillus acidophilus: properties and performance in phthalate ester degradation.

作者信息

Zhang Xiao-Yan, Fan Xiang, Qiu Yong-Jun, Li Cheng-Yuan, Xing Shuai, Zheng Yi-Tao, Xu Jian-He

机构信息

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China.

出版信息

Appl Environ Microbiol. 2014 Nov;80(22):6870-8. doi: 10.1128/AEM.02072-14. Epub 2014 Aug 22.

Abstract

EstS1, a newly identified thermostable esterase from Sulfobacillus acidophilus DSM10332, was heterologously expressed in Escherichia coli and shown to enzymatically degrade phthalate esters (PAEs) to their corresponding monoalkyl PAEs. The optimal pH and temperature of the esterase were found to be 8.0 and 70°C, respectively. The half-life of EstS1 at 60°C was 15 h, indicating that the enzyme had good thermostability. The specificity constant (kcat/Km) of the enzyme for p-nitrophenyl butyrate was as high as 6,770 mM(-1) s(-1). The potential value of EstS1 was demonstrated by its ability to effectively hydrolyze 35 to 82% of PAEs (10 mM) within 2 min at 37°C, with all substrates being completely degraded within 24 h. At 60°C, the time required for complete hydrolysis of most PAEs was reduced by half. To our knowledge, this enzyme is a new esterase identified from thermophiles that is able to degrade various PAEs at high temperatures.

摘要

EstS1是一种新发现的来自嗜酸硫化芽孢杆菌DSM10332的耐热酯酶,它在大肠杆菌中实现了异源表达,并被证明能将邻苯二甲酸酯(PAEs)酶解为相应的单烷基PAEs。该酯酶的最适pH值和温度分别为8.0和70°C。EstS1在60°C下的半衰期为15小时,表明该酶具有良好的热稳定性。该酶对丁酸对硝基苯酯的特异性常数(kcat/Km)高达6770 mM⁻¹ s⁻¹。EstS1的潜在价值体现在其能够在37°C下2分钟内有效水解35%至82%的PAEs(10 mM),且所有底物在24小时内完全降解。在60°C时,大多数PAEs完全水解所需的时间减半。据我们所知,这种酶是从嗜热菌中鉴定出的一种新型酯酶,能够在高温下降解各种PAEs。

相似文献

1
Newly identified thermostable esterase from Sulfobacillus acidophilus: properties and performance in phthalate ester degradation.
Appl Environ Microbiol. 2014 Nov;80(22):6870-8. doi: 10.1128/AEM.02072-14. Epub 2014 Aug 22.
2
4
Simultaneously degradation of various phthalate esters by Rhodococcus sp. AH-ZY2: Strain, omics and enzymatic study.
J Hazard Mater. 2024 Aug 5;474:134776. doi: 10.1016/j.jhazmat.2024.134776. Epub 2024 May 31.
5
Molecular cloning and characterization of a new and highly thermostable esterase from Geobacillus sp. JM6.
J Basic Microbiol. 2015 Oct;55(10):1219-31. doi: 10.1002/jobm.201500081. Epub 2015 Jul 15.
7
Characterization of EST3: a metagenome-derived esterase with suitable properties for biotechnological applications.
Appl Microbiol Biotechnol. 2016 Jul;100(13):5815-27. doi: 10.1007/s00253-016-7385-z. Epub 2016 Feb 26.
9
Characterization of a novel carboxylesterase from Bacillus velezensis SYBC H47 and its application in degradation of phthalate esters.
J Biosci Bioeng. 2020 May;129(5):588-594. doi: 10.1016/j.jbiosc.2019.11.002. Epub 2019 Nov 21.
10
A thermostable esterase from Thermoanaerobacter tengcongensis opening up a new family of bacterial lipolytic enzymes.
Biochim Biophys Acta. 2011 Dec;1814(12):1695-702. doi: 10.1016/j.bbapap.2011.08.013. Epub 2011 Aug 31.

引用本文的文献

2
Identification and characterisation of moderately thermostable diisobutyl phthalate degrading esterase from a Great Artesian Basin NP05.
Biotechnol Rep (Amst). 2024 Apr 4;42:e00840. doi: 10.1016/j.btre.2024.e00840. eCollection 2024 Jun.
5
Whole-genome analysis of sp. USTBZA1 for biodegrading diethyl phthalate.
3 Biotech. 2023 Oct;13(10):329. doi: 10.1007/s13205-023-03736-3. Epub 2023 Sep 3.
6
Enzyme catalyzes ester bond synthesis and hydrolysis: The key step for sustainable usage of plastics.
Front Microbiol. 2023 Jan 12;13:1113705. doi: 10.3389/fmicb.2022.1113705. eCollection 2022.
8
Enhanced esterase activity during the degradation of dibutyl phthalate by Fusarium species in liquid fermentation.
J Ind Microbiol Biotechnol. 2021 Dec 23;48(9-10). doi: 10.1093/jimb/kuab062.

本文引用的文献

2
Bacterial degradation of phthalate isomers and their esters.
Indian J Microbiol. 2008 Mar;48(1):19-34. doi: 10.1007/s12088-008-0003-8. Epub 2008 May 1.
3
Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies--a review.
J Environ Manage. 2012 Oct 30;109:164-78. doi: 10.1016/j.jenvman.2012.05.014. Epub 2012 Jul 13.
4
5
The crystal structure of an esterase from the hyperthermophilic microorganism Pyrobaculum calidifontis VA1 explains its enantioselectivity.
Appl Microbiol Biotechnol. 2011 Aug;91(4):1061-72. doi: 10.1007/s00253-011-3337-9. Epub 2011 May 26.
6
Enzymatic hydrolysis of structurally diverse phthalic acid esters by porcine and bovine pancreatic cholesterol esterases.
Chemosphere. 2010 Dec;81(11):1544-8. doi: 10.1016/j.chemosphere.2010.08.020. Epub 2010 Sep 6.
9
His-tag impact on structure.
Acta Crystallogr D Biol Crystallogr. 2007 Mar;63(Pt 3):295-301. doi: 10.1107/S0907444906052024. Epub 2007 Feb 21.
10
Phthalate ester toxicity in Leydig cells: developmental timing and dosage considerations.
Reprod Toxicol. 2007 Apr-May;23(3):366-73. doi: 10.1016/j.reprotox.2006.12.006. Epub 2007 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验