Suppr超能文献

考虑到光系统光化学效率随辐照度增加而降低,以估算叶片光合作用的量子产率。

Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis.

作者信息

Yin Xinyou, Belay Daniel W, van der Putten Peter E L, Struik Paul C

机构信息

Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK, Wageningen, The Netherlands,

出版信息

Photosynth Res. 2014 Dec;122(3):323-35. doi: 10.1007/s11120-014-0030-8. Epub 2014 Aug 23.

Abstract

Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10-15%. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer-Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model.

摘要

在低光条件下叶片二氧化碳同化的最大量子产率(Φ CO2LL)通常被估计为在一系列低辐照条件下净光合速率与吸收辐照度线性回归的斜率。与这种估计相关的方法学误差通常归因于非光合色素的光吸收或一些数据点超出辐照度响应的线性范围,这两者都会导致Φ CO2LL的低估。我们在此证明,即使在非常低的水平下,光系统(PS)光化学效率随辐照度增加而降低是导致Φ CO2LL系统性低估的另一个误差来源。开发了一种考虑此误差的模型方法,并使用该方法通过对叶片同时进行气体交换和叶绿素荧光测量来估计Φ CO2LL,测量使用了不同物种、二氧化碳、氧气或叶片温度水平的各种组合。传统的线性回归方法使Φ CO2LL低估了约10 - 15%。测量条件之间估计的Φ CO2LL差异通常由Farquhar - von Caemmerer - Berry模型描述的不同光呼吸水平来解释。然而,我们的数据表明,低光下PSII光化学效率的温度依赖性是模型中应考虑的另一个因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验