Suppr超能文献

比较生物信息学基因表达谱分析方法:微阵列和RNA测序。

Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq.

作者信息

Mantione Kirk J, Kream Richard M, Kuzelova Hana, Ptacek Radek, Raboch Jiri, Samuel Joshua M, Stefano George B

机构信息

Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, USA.

Center for Molecular and Cognitive Neuroscience, 1st Faculty of Medicine and Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.

出版信息

Med Sci Monit Basic Res. 2014 Aug 23;20:138-42. doi: 10.12659/MSMBR.892101.

Abstract

Understanding the control of gene expression is critical for our understanding of the relationship between genotype and phenotype. The need for reliable assessment of transcript abundance in biological samples has driven scientists to develop novel technologies such as DNA microarray and RNA-Seq to meet this demand. This review focuses on comparing the two most useful methods for whole transcriptome gene expression profiling. Microarrays are reliable and more cost effective than RNA-Seq for gene expression profiling in model organisms. RNA-Seq will eventually be used more routinely than microarray, but right now the techniques can be complementary to each other. Microarrays will not become obsolete but might be relegated to only a few uses. RNA-Seq clearly has a bright future in bioinformatic data collection.

摘要

了解基因表达的调控对于我们理解基因型与表型之间的关系至关重要。对生物样本中转录本丰度进行可靠评估的需求促使科学家们开发了诸如DNA微阵列和RNA测序等新技术来满足这一需求。本综述着重比较两种用于全转录组基因表达谱分析的最有用方法。在模式生物的基因表达谱分析中,微阵列比RNA测序更可靠且成本效益更高。RNA测序最终会比微阵列更常规地被使用,但目前这两种技术可以相互补充。微阵列不会过时,但可能会仅限于少数用途。RNA测序在生物信息数据收集方面显然有着光明的未来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d21/4152252/3a1e75117bb3/medscimonitbasicres-20-138.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验