Suppr超能文献

蛋白质结合与功能中的构象选择

Conformational selection in protein binding and function.

作者信息

Weikl Thomas R, Paul Fabian

机构信息

Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.

出版信息

Protein Sci. 2014 Nov;23(11):1508-18. doi: 10.1002/pro.2539. Epub 2014 Sep 6.

Abstract

Protein binding and function often involves conformational changes. Advanced nuclear magnetic resonance (NMR) experiments indicate that these conformational changes can occur in the absence of ligand molecules (or with bound ligands), and that the ligands may "select" protein conformations for binding (or unbinding). In this review, we argue that this conformational selection requires transition times for ligand binding and unbinding that are small compared to the dwell times of proteins in different conformations, which is plausible for small ligand molecules. Such a separation of timescales leads to a decoupling and temporal ordering of binding/unbinding events and conformational changes. We propose that conformational-selection and induced-change processes (such as induced fit) are two sides of the same coin, because the temporal ordering is reversed in binding and unbinding direction. Conformational-selection processes can be characterized by a conformational excitation that occurs prior to a binding or unbinding event, while induced-change processes exhibit a characteristic conformational relaxation that occurs after a binding or unbinding event. We discuss how the ordering of events can be determined from relaxation rates and effective on- and off-rates determined in mixing experiments, and from the conformational exchange rates measured in advanced NMR or single-molecule fluorescence resonance energy transfer experiments. For larger ligand molecules such as peptides, conformational changes and binding events can be intricately coupled and exhibit aspects of conformational-selection and induced-change processes in both binding and unbinding direction.

摘要

蛋白质结合与功能通常涉及构象变化。先进的核磁共振(NMR)实验表明,这些构象变化可在没有配体分子的情况下发生(或在有结合配体时发生),并且配体可能会“选择”蛋白质构象以进行结合(或解离)。在本综述中,我们认为这种构象选择需要配体结合和解离的转变时间,与蛋白质在不同构象中的停留时间相比要短,这对于小分子配体来说是合理的。这种时间尺度的分离导致结合/解离事件与构象变化的解耦和时间排序。我们提出构象选择和诱导变化过程(如诱导契合)是同一枚硬币的两面,因为在结合和解离方向上时间排序是相反的。构象选择过程的特征是在结合或解离事件之前发生构象激发,而诱导变化过程则表现为在结合或解离事件之后发生特征性的构象弛豫。我们讨论了如何从混合实验中测定的弛豫速率和有效结合与解离速率,以及从先进的核磁共振或单分子荧光共振能量转移实验中测量的构象交换速率来确定事件的排序。对于较大的配体分子,如肽,构象变化和结合事件可能会复杂地耦合,并在结合和解离方向上表现出构象选择和诱导变化过程的特征。

相似文献

1
Conformational selection in protein binding and function.
Protein Sci. 2014 Nov;23(11):1508-18. doi: 10.1002/pro.2539. Epub 2014 Sep 6.
2
3
Estimation of Protein-Ligand Unbinding Kinetics Using Non-Equilibrium Targeted Molecular Dynamics Simulations.
J Chem Inf Model. 2019 Dec 23;59(12):5135-5147. doi: 10.1021/acs.jcim.9b00592. Epub 2019 Nov 22.
4
Enhanced Sampling Simulations of Ligand Unbinding Kinetics Controlled by Protein Conformational Changes.
J Chem Inf Model. 2019 Sep 23;59(9):3910-3918. doi: 10.1021/acs.jcim.9b00523. Epub 2019 Sep 10.
6
How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates.
PLoS Comput Biol. 2016 Sep 16;12(9):e1005067. doi: 10.1371/journal.pcbi.1005067. eCollection 2016 Sep.
7
Evidence of conformational selection driving the formation of ligand binding sites in protein-protein interfaces.
PLoS Comput Biol. 2014 Oct 2;10(10):e1003872. doi: 10.1371/journal.pcbi.1003872. eCollection 2014 Oct.
9
Ligand-induced protein transition state stabilization switches the binding pathway from conformational selection to induced fit.
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2317747121. doi: 10.1073/pnas.2317747121. Epub 2024 Mar 25.
10
Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison.
Life (Basel). 2022 Jan 13;12(1):116. doi: 10.3390/life12010116.

引用本文的文献

1
Observation of SAM-VI Riboswitch Dynamics Using Single-Molecule FRET.
Biomolecules. 2025 Jun 9;15(6):841. doi: 10.3390/biom15060841.
3
TRPM8 protein dynamics correlates with ligand structure and cellular function.
bioRxiv. 2025 May 15:2025.05.13.653789. doi: 10.1101/2025.05.13.653789.
4
TRPM8 Protein Dynamics Correlates with Ligand Structure and Cellular Function.
J Am Chem Soc. 2025 Jun 4;147(22):18460-18474. doi: 10.1021/jacs.4c09435. Epub 2025 May 27.
5
The inhibitory activities of two compounds from Fresen on the acetylcholinesterase from wheat pest Rondani: analysis.
Plant Signal Behav. 2025 Dec;20(1):2444311. doi: 10.1080/15592324.2024.2444311. Epub 2024 Dec 19.
6
Structure and Dynamics of the CCCH-Type Tandem Zinc Finger Domain of POS-1 and Implications for RNA Binding Specificity.
Biochemistry. 2024 Oct 15;63(20):2632-2647. doi: 10.1021/acs.biochem.4c00259. Epub 2024 Sep 25.
7
Ligand-induced protein transition state stabilization switches the binding pathway from conformational selection to induced fit.
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2317747121. doi: 10.1073/pnas.2317747121. Epub 2024 Mar 25.
8
A unified view on enzyme catalysis by cryo-EM study of a DNA topoisomerase.
Commun Chem. 2024 Feb 28;7(1):45. doi: 10.1038/s42004-024-01129-y.
9
ELM-the Eukaryotic Linear Motif resource-2024 update.
Nucleic Acids Res. 2024 Jan 5;52(D1):D442-D455. doi: 10.1093/nar/gkad1058.
10
Protein conformational ensembles in function: roles and mechanisms.
RSC Chem Biol. 2023 Sep 5;4(11):850-864. doi: 10.1039/d3cb00114h. eCollection 2023 Nov 1.

本文引用的文献

1
EMMA: A Software Package for Markov Model Building and Analysis.
J Chem Theory Comput. 2012 Jul 10;8(7):2223-38. doi: 10.1021/ct300274u. Epub 2012 Jun 18.
2
Reconstructing folding energy landscapes by single-molecule force spectroscopy.
Annu Rev Biophys. 2014;43:19-39. doi: 10.1146/annurev-biophys-051013-022754.
3
Protein conformational dynamics dictate the binding affinity for a ligand.
Nat Commun. 2014 Apr 24;5:3724. doi: 10.1038/ncomms4724.
4
Conformational selection is a dominant mechanism of ligand binding.
Biochemistry. 2013 Aug 27;52(34):5723-9. doi: 10.1021/bi400929b. Epub 2013 Aug 15.
5
A single-molecule dissection of ligand binding to a protein with intrinsic dynamics.
Nat Chem Biol. 2013 May;9(5):313-8. doi: 10.1038/nchembio.1213. Epub 2013 Mar 17.
8
Force as a single molecule probe of multidimensional protein energy landscapes.
Curr Opin Struct Biol. 2013 Feb;23(1):48-57. doi: 10.1016/j.sbi.2012.11.007. Epub 2012 Dec 30.
9
Kinetic characterization of the critical step in HIV-1 protease maturation.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20449-54. doi: 10.1073/pnas.1210983109. Epub 2012 Nov 26.
10
Conformational selection or induced fit? A critical appraisal of the kinetic mechanism.
Biochemistry. 2012 Jul 31;51(30):5894-902. doi: 10.1021/bi3006913. Epub 2012 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验