Bone Research Laboratory, School of Physiology, Faculty of Health Sciences, Medical School, University of the Witwatersrand, Johannesburg, South Africa.
Department of Internal Medicine, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa.
Biomaterials. 2014 Nov;35(35):9407-22. doi: 10.1016/j.biomaterials.2014.07.053. Epub 2014 Aug 23.
The molecular cloning of the osteogenic proteins of the transforming growth factor-β (TGF-β) supergene family and the results of numerous pre-clinical studies in several mammalian species including non-human primates, have prematurely convinced molecular biologists, tissue engineers and skeletal reconstructionists alike to believe that single recombinant human bone morphogenetic/osteogenic proteins (hBMPs/OPs) would result in tissue induction when translated in clinical contexts. This theoretical potential has not been translated to acceptable clinical results. Clinical trials in craniofacial and orthopedic applications such as mandibular reconstruction and sinus-lift operations have indicated that supra physiological doses of a single recombinant human protein are needed to induce unacceptable tissue regeneration whilst incurring significant costs without achieving equivalence to autogenous bone grafts. The acid test for clinically relevant bone tissue engineering should now become the concept of clinically significant osteoinduction, whereby the regenerated bone is readily identifiable on radiographic examination by virtue of its opacity and trabecular architecture. The need for alternatives to the hBMPs/OPs is now felt more acutely following reported complications and performance failure associated with the clinical use of hBMP-2 and hOP-1 (BMP-7). Because of the often substandard regeneration of clinical defects implanted with hBMPs/OPs, we now need to finally deal with the provocative question: are the hBMPs/OPs the only initiators of the induction of bone formation in pre-clinical and clinical contexts? The rapid induction of bone formation by the hTGF-β₃ isoform in heteropic intramuscular sites of the Chacma baboon Papio ursinus together with TGF-β₁, TGF-β₃, BMP-2, BMP-3, OP-1, RUNX-2 and Osteocalcin up-regulation and expression, hyper cellular osteoblastic activity, osteoid synthesis, angiogenesis and capillary sprouting are the molecular and morphological foundation for the induction of bone formation in clinical contexts. The induction of bone as initiated by hTGF-β3 when implanted in the rectus abdominis muscle of P. ursinus is via the BMPs/OPs pathway with hTGF-β₃ controlling the induction of bone formation by regulating the expression of BMPs/OPs via Noggin expression, eliciting the induction of bone formation by up-regulating endogenous BMPs/OPs and it is blocked by hNoggin, providing insights into performance failure of hBMPs/OPs in clinical contexts. Physiological expression of BMPs/OPs genes upon implantation of hTGF-β₃ may escape the antagonist expression of Noggin and other inhibitors, whereas direct application of hBMPs/OPs, representing a later by-product step of the bone induction cascade as set by the TGF-β₃ master gene in primates, sets into motion Noggin' antagonist action, as shown by the limited effectiveness of hBMPs/OPs in clinical contexts. The unprecedented induction of bone formation by 250 μg hTGF-β₃ when combined with coral-derived macroporous constructs is the novel molecular and morphological frontier for the induction of bone formation in man. The induction of bone by hTGF-β₃ has been thus translated in clinical contexts to treat a large mandibular defect in a pediatric patient; 30 months after implantation of 250 μg hTGF-β₃ per gram of human demineralized bone matrix, radiographic analyses show the reconstruction of the avulsed large mandibular segment including the induction of the avulsed coronoid process.
转化生长因子-β(TGF-β)超家族成骨蛋白的分子克隆以及包括非人类灵长类动物在内的多种哺乳动物的大量临床前研究结果,使分子生物学家、组织工程师和骨骼重建专家过早地相信,当翻译为临床环境时,单一的重组人骨形态发生/成骨蛋白(hBMPs/OPs)将导致组织诱导。这种理论潜力尚未转化为可接受的临床结果。颅面和骨科应用的临床试验,如下颌骨重建和窦提升手术,表明需要超生理剂量的单一重组人蛋白来诱导不可接受的组织再生,同时会产生显著的成本,而不能达到自体骨移植物的等效性。现在,对于临床相关的骨组织工程来说,真正的考验应该是临床意义上的成骨诱导的概念,即在放射学检查中,再生骨由于其不透明度和小梁结构很容易被识别。在与 hBMP-2 和 hOP-1(BMP-7)的临床使用相关的并发症和性能失败报告后,人们现在更加迫切地需要替代 hBMPs/OPs。由于 hBMPs/OPs 植入的临床缺陷的再生往往不标准,我们现在需要最终解决这个挑衅性的问题:hBMPs/OPs 是否是临床前和临床背景下诱导骨形成的唯一启动子?hTGF-β₃ 同种型在 Chacma 狒狒(Papio ursinus)异位肌内部位的快速诱导骨形成,以及 TGF-β₁、TGF-β₃、BMP-2、BMP-3、OP-1、RUNX-2 和骨钙素的上调和表达、高细胞成骨细胞活性、类骨质合成、血管生成和毛细血管发芽,是诱导骨形成的分子和形态学基础。hTGF-β₃ 植入 P. ursinus 的腹直肌中诱导骨形成是通过 BMPs/OPs 途径,hTGF-β₃ 通过 Noggin 表达来控制 BMPs/OPs 的表达,从而诱导骨形成,通过上调内源性 BMPs/OPs 来诱导骨形成,并通过 hNoggin 阻断,这为理解 hBMPs/OPs 在临床背景下的性能失败提供了线索。hTGF-β₃ 植入后 BMPs/OPs 基因的生理表达可能逃避 Noggin 和其他抑制剂的拮抗表达,而直接应用 hBMPs/OPs 则代表了灵长类动物中 TGF-β₃ 主基因诱导骨形成级联反应的后期产物步骤,引发了 Noggin 的拮抗作用,正如 hBMPs/OPs 在临床背景下的有限效果所表明的那样。250μg hTGF-β₃ 与珊瑚衍生的大孔结构结合后前所未有的骨形成诱导作用是人类诱导骨形成的新分子和形态学前沿。hTGF-β₃ 诱导的骨形成已在临床环境中转化为治疗儿童患者的大下颌骨缺损;植入 250μg hTGF-β₃ 后 30 个月,对人脱矿骨基质每克进行放射学分析,显示出对撕裂的大下颌骨节段的重建,包括对撕裂的喙突的诱导。