Schuetz Mathias, Benske Anika, Smith Rebecca A, Watanabe Yoichiro, Tobimatsu Yuki, Ralph John, Demura Taku, Ellis Brian, Samuels A Lacey
Department of Botany (M.S., A.B., R.A.S., Y.W., A.L.S.) and Michael Smith Laboratories (A.B., R.A.S., B.E.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4;Department of Biochemistry and United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53703 (Y.T., J.R.);Nara Institute of Science and Technology, Nara 630-0192, Japan (T.D.); andGraduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan (Y.T.).
Department of Botany (M.S., A.B., R.A.S., Y.W., A.L.S.) and Michael Smith Laboratories (A.B., R.A.S., B.E.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4;Department of Biochemistry and United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53703 (Y.T., J.R.);Nara Institute of Science and Technology, Nara 630-0192, Japan (T.D.); andGraduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan (Y.T.)
Plant Physiol. 2014 Oct;166(2):798-807. doi: 10.1104/pp.114.245597. Epub 2014 Aug 25.
Plants precisely control lignin deposition in spiral or annular secondary cell wall domains during protoxylem tracheary element (TE) development. Because protoxylem TEs function to transport water within rapidly elongating tissues, it is important that lignin deposition is restricted to the secondary cell walls in order to preserve the plasticity of adjacent primary wall domains. The Arabidopsis (Arabidopsis thaliana) inducible VASCULAR NAC DOMAIN7 (VND7) protoxylem TE differentiation system permits the use of mutant backgrounds, fluorescent protein tagging, and high-resolution live-cell imaging of xylem cells during secondary cell wall development. Enzymes synthesizing monolignols, as well as putative monolignol transporters, showed a uniform distribution during protoxylem TE differentiation. By contrast, the oxidative enzymes LACCASE4 (LAC4) and LAC17 were spatially localized to secondary cell walls throughout protoxylem TE differentiation. These data support the hypothesis that precise delivery of oxidative enzymes determines the pattern of cell wall lignification. This view was supported by lac4lac17 mutant analysis demonstrating that laccases are necessary for protoxylem TE lignification. Overexpression studies showed that laccases are sufficient to catalyze ectopic lignin polymerization in primary cell walls when exogenous monolignols are supplied. Our data support a model of protoxylem TE lignification in which monolignols are highly mobile once exported to the cell wall, and in which precise targeting of laccases to secondary cell wall domains directs lignin deposition.
在原生木质部管状分子(TE)发育过程中,植物精确控制木质素在螺旋状或环状次生细胞壁区域的沉积。由于原生木质部TE的功能是在快速伸长的组织中运输水分,因此将木质素沉积限制在次生细胞壁中以保持相邻初生壁区域的可塑性非常重要。拟南芥(Arabidopsis thaliana)的诱导型血管NAC结构域7(VND7)原生木质部TE分化系统允许在次生细胞壁发育过程中使用突变背景、荧光蛋白标记和木质部细胞的高分辨率活细胞成像。在原生木质部TE分化过程中,合成单木质醇的酶以及假定的单木质醇转运蛋白呈现均匀分布。相比之下,氧化酶漆酶4(LAC4)和漆酶17在整个原生木质部TE分化过程中在空间上定位于次生细胞壁。这些数据支持了氧化酶的精确递送决定细胞壁木质化模式的假说。lac4lac17突变体分析支持了这一观点,表明漆酶对于原生木质部TE的木质化是必需的。过表达研究表明,当提供外源单木质醇时,漆酶足以催化初生细胞壁中的异位木质素聚合。我们的数据支持一种原生木质部TE木质化模型,其中单木质醇一旦输出到细胞壁就具有高度流动性,并且漆酶精确靶向次生细胞壁区域指导木质素沉积。