Suppr超能文献

氧化物表面上可压缩聚合物薄膜的定量力学分析。

Quantitative mechanical analysis of thin compressible polymer monolayers on oxide surfaces.

作者信息

Huang Qian, Yoon Ilsun, Villanueva Josh, Kim Kanguk, Sirbuly Donald J

机构信息

Department of NanoEngineering, University of California, La Jolla, San Diego, CA 92093, USA.

出版信息

Soft Matter. 2014 Oct 28;10(40):8001-10. doi: 10.1039/c4sm01530d.

Abstract

A clear understanding of the mechanical behavior of nanometer thick films on nanostructures, as well as developing versatile approaches to characterize their mechanical properties, are of great importance and may serve as the foundation for understanding and controlling molecular interactions at the interface of nanostructures. Here we report on the synthesis of thin, compressible polyethylene glycol (PEG) monolayers with a wet thickness of <20 nm on tin dioxide (SnO2) nanofibers through silane-based chemistries. Nanomechanical properties of such thin PEG films were extensively investigated using atomic force microscopy (AFM). In addition, tip-sample interactions were carefully studied, with different AFM tip modifications (i.e., hydrophilic and hydrophobic) and in different ionic solutions. We find that the steric forces dominate the tip-sample interactions when the polymer film is immersed in solution with salt concentrations similar to biological media (e.g., 1x phosphate buffer solution), while van der Waals and electrostatic forces have minimal contributions. A Dimitriadis thin film polymer compression model shows that the linear elastic regime is reproducible in the initial 50% indentation of these films which have tunable Young's moduli ranging from 5 MPa for the low molecular weight films to 700 kPa for the high molecular weight PEG films. Results are compared with the same PEG films deposited on silicon substrates which helped quantify the structural properties and understand the relationship between the structural and the mechanical properties of PEG films on the SnO2 fibers.

摘要

清楚了解纳米结构上纳米厚薄膜的力学行为,以及开发通用方法来表征其力学性能,具有重要意义,并且可能为理解和控制纳米结构界面处的分子相互作用奠定基础。在此,我们报告通过基于硅烷的化学方法,在二氧化锡(SnO₂)纳米纤维上合成湿厚度小于20 nm的薄且可压缩的聚乙二醇(PEG)单分子层。使用原子力显微镜(AFM)广泛研究了此类薄PEG薄膜的纳米力学性能。此外,还通过不同的AFM针尖修饰(即亲水性和疏水性)以及在不同的离子溶液中,仔细研究了针尖 - 样品相互作用。我们发现,当聚合物薄膜浸入盐浓度与生物介质相似的溶液(例如1×磷酸盐缓冲溶液)中时,空间位阻力主导着针尖 - 样品相互作用,而范德华力和静电力的贡献最小。一个Dimitriadis薄膜聚合物压缩模型表明,在这些薄膜初始50%的压痕中,线性弹性区域是可重复的,这些薄膜的可调杨氏模量范围从低分子量薄膜的5 MPa到高分子量PEG薄膜的700 kPa。将结果与沉积在硅衬底上的相同PEG薄膜进行比较,这有助于量化结构特性,并理解SnO₂纤维上PEG薄膜的结构与力学性能之间的关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验