Suppr超能文献

通过数学建模优化灌注中空纤维生物反应器中的细胞聚集体扩增

Optimising cell aggregate expansion in a perfused hollow fibre bioreactor via mathematical modelling.

作者信息

Chapman Lloyd A C, Shipley Rebecca J, Whiteley Jonathan P, Ellis Marianne J, Byrne Helen M, Waters Sarah L

机构信息

Mathematical Institute, University of Oxford, Oxford, United Kingdom; Department of Computer Science, University of Oxford, Oxford, United Kingdom.

Department of Mechanical Engineering, UCL, London, United Kingdom.

出版信息

PLoS One. 2014 Aug 26;9(8):e105813. doi: 10.1371/journal.pone.0105813. eCollection 2014.

Abstract

The need for efficient and controlled expansion of cell populations is paramount in tissue engineering. Hollow fibre bioreactors (HFBs) have the potential to meet this need, but only with improved understanding of how operating conditions and cell seeding strategy affect cell proliferation in the bioreactor. This study is designed to assess the effects of two key operating parameters (the flow rate of culture medium into the fibre lumen and the fluid pressure imposed at the lumen outlet), together with the cell seeding distribution, on cell population growth in a single-fibre HFB. This is achieved using mathematical modelling and numerical methods to simulate the growth of cell aggregates along the outer surface of the fibre in response to the local oxygen concentration and fluid shear stress. The oxygen delivery to the cell aggregates and the fluid shear stress increase as the flow rate and pressure imposed at the lumen outlet are increased. Although the increased oxygen delivery promotes growth, the higher fluid shear stress can lead to cell death. For a given cell type and initial aggregate distribution, the operating parameters that give the most rapid overall growth can be identified from simulations. For example, when aggregates of rat cardiomyocytes that can tolerate shear stresses of up to 0:05 Pa are evenly distributed along the fibre, the inlet flow rate and outlet pressure that maximise the overall growth rate are predicted to be in the ranges 2.75 x 10(-5) m(2) s(-1) to 3 x 10(-5) m(2) s(-1) (equivalent to 2.07 ml min(-1) to 2.26 ml min(-1)) and 1.077 x 10(5) Pa to 1.083 x 10(5) Pa (or 15.6 psi to 15.7 psi) respectively. The combined effects of the seeding distribution and flow on the growth are also investigated and the optimal conditions for growth found to depend on the shear tolerance and oxygen demands of the cells.

摘要

在组织工程中,高效且可控地扩增细胞群体的需求至关重要。中空纤维生物反应器(HFBs)有潜力满足这一需求,但前提是要更好地理解操作条件和细胞接种策略如何影响生物反应器中的细胞增殖。本研究旨在评估两个关键操作参数(培养基流入纤维内腔的流速和施加于内腔出口的流体压力)以及细胞接种分布对单纤维HFB中细胞群体生长的影响。这是通过数学建模和数值方法来实现的,以模拟细胞聚集体沿纤维外表面的生长情况,该生长是对局部氧浓度和流体剪切应力的响应。随着内腔出口处施加的流速和压力增加,输送到细胞聚集体的氧气量以及流体剪切应力都会增加。虽然增加的氧气输送促进生长,但较高的流体剪切应力可能导致细胞死亡。对于给定的细胞类型和初始聚集体分布,可以从模拟中确定能实现最快整体生长的操作参数。例如,当能够耐受高达0.05 Pa剪切应力的大鼠心肌细胞聚集体沿纤维均匀分布时,预测使整体生长速率最大化的入口流速和出口压力分别在2.75×10⁻⁵ m² s⁻¹至3×10⁻⁵ m² s⁻¹(相当于2.07 ml min⁻¹至2.26 ml min⁻¹)以及1.077×10⁵ Pa至1.083×10⁵ Pa(或15.6 psi至15.7 psi)范围内。还研究了接种分布和流动对生长的综合影响,发现生长的最佳条件取决于细胞的剪切耐受性和氧气需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aad0/4144904/4d11e986f953/pone.0105813.g001.jpg

相似文献

1
Optimising cell aggregate expansion in a perfused hollow fibre bioreactor via mathematical modelling.
PLoS One. 2014 Aug 26;9(8):e105813. doi: 10.1371/journal.pone.0105813. eCollection 2014.
2
Mathematical modelling of cell layer growth in a hollow fibre bioreactor.
J Theor Biol. 2017 Apr 7;418:36-56. doi: 10.1016/j.jtbi.2017.01.016. Epub 2017 Jan 12.
3
Mathematical modelling of a liver hollow fibre bioreactor.
J Theor Biol. 2019 Aug 21;475:25-33. doi: 10.1016/j.jtbi.2019.05.008. Epub 2019 May 14.
4
A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors.
Biotechnol Bioeng. 2011 Jun;108(6):1450-61. doi: 10.1002/bit.23062. Epub 2011 Mar 2.
6
Multiphase modelling of the effect of fluid shear stress on cell yield and distribution in a hollow fibre membrane bioreactor.
Biomech Model Mechanobiol. 2015 Apr;14(2):387-402. doi: 10.1007/s10237-014-0611-7. Epub 2014 Sep 12.
8
Engineered bone culture in a perfusion bioreactor: a 2D computational study of stationary mass and momentum transport.
Comput Methods Biomech Biomed Engin. 2007 Dec;10(6):429-38. doi: 10.1080/10255840701494635. Epub 2007 Aug 22.
9
Mathematical modelling of fibre-enhanced perfusion inside a tissue-engineering bioreactor.
J Theor Biol. 2009 Feb 21;256(4):533-46. doi: 10.1016/j.jtbi.2008.10.013. Epub 2008 Oct 25.
10
Hollow fibre membrane bioreactors for tissue engineering applications.
Biotechnol Lett. 2014 Dec;36(12):2357-66. doi: 10.1007/s10529-014-1619-x. Epub 2014 Jul 27.

引用本文的文献

1
Soft bioreactor systems: a necessary step toward engineered MSK soft tissue?
Front Robot AI. 2024 Apr 22;11:1287446. doi: 10.3389/frobt.2024.1287446. eCollection 2024.
2
Challenges in computational fluid dynamics applications for bone tissue engineering.
Proc Math Phys Eng Sci. 2022 Jan;478(2257):20210607. doi: 10.1098/rspa.2021.0607. Epub 2022 Jan 26.
3
Implementation and acceleration of optimal control for systems biology.
J R Soc Interface. 2021 Aug;18(181):20210241. doi: 10.1098/rsif.2021.0241. Epub 2021 Aug 25.
4
A Systematically Reduced Mathematical Model for Organoid Expansion.
Front Bioeng Biotechnol. 2021 Jun 10;9:670186. doi: 10.3389/fbioe.2021.670186. eCollection 2021.
7
Mathematical and computational models for bone tissue engineering in bioreactor systems.
J Tissue Eng. 2019 Feb 22;10:2041731419827922. doi: 10.1177/2041731419827922. eCollection 2019 Jan-Dec.

本文引用的文献

1
Are in vitro estimates of cell diffusivity and cell proliferation rate sensitive to assay geometry?
J Theor Biol. 2014 Sep 7;356:71-84. doi: 10.1016/j.jtbi.2014.04.026. Epub 2014 Apr 28.
3
Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering.
J Artif Organs. 2012 Sep;15(3):250-65. doi: 10.1007/s10047-012-0649-1. Epub 2012 May 19.
5
A continuum model of cell proliferation and nutrient transport in a perfusion bioreactor.
Math Med Biol. 2013 Mar;30(1):21-44. doi: 10.1093/imammb/dqr022. Epub 2011 Oct 11.
6
Stem cell cultivation in bioreactors.
Biotechnol Adv. 2011 Nov-Dec;29(6):815-29. doi: 10.1016/j.biotechadv.2011.06.009. Epub 2011 Jun 25.
7
A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors.
Biotechnol Bioeng. 2011 Jun;108(6):1450-61. doi: 10.1002/bit.23062. Epub 2011 Mar 2.
8
Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress.
Bone. 2011 Feb;48(2):171-81. doi: 10.1016/j.bone.2010.09.138. Epub 2010 Oct 13.
9
Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review.
Tissue Eng Part B Rev. 2010 Dec;16(6):587-601. doi: 10.1089/ten.TEB.2010.0370. Epub 2010 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验