Suppr超能文献

在灌注生物反应器中进行骨组织工程期间,支架孔隙率的变化会极大地影响细胞矿化的机械刺激。

Changes in scaffold porosity during bone tissue engineering in perfusion bioreactors considerably affect cellular mechanical stimulation for mineralization.

作者信息

Zhao Feihu, Lacroix Damien, Ito Keita, van Rietbergen Bert, Hofmann Sandra

机构信息

Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands.

Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands.

出版信息

Bone Rep. 2020 Apr 8;12:100265. doi: 10.1016/j.bonr.2020.100265. eCollection 2020 Jun.

Abstract

Bone tissue engineering (BTE) experiments have shown that fluid-induced wall shear stress (WSS) can stimulate cells to produce mineralized extracellular matrix (ECM). The application of WSS on seeded cells can be achieved through bioreactors that perfuse medium through porous scaffolds. In BTE experiments , commonly a constant flow rate is used. Previous studies have found that tissue growth within the scaffold will result in an increase of the WSS over time. To keep the WSS in a reported optimal range of 10-30 mPa, the applied external flow rate can be decreased over time. To investigate what reduction of the external flow rate during culturing is needed to keep the WSS in the optimal range, we here conducted a computational study, which simulated the formation of ECM, and in which we investigated the effect of constant fluid flow and different fluid flow reduction scenarios on the WSS. It was found that for both constant and reduced fluid flow scenarios, the WSS did not exceed a critical value, which was set to 60 mPa. However, the constant flow velocity resulted in a reduction of the cell/ECM surface being exposed to a WSS in the optimal range from 50% at the start of culture to 18.6% at day 21. Reducing the fluid flow over time could avoid much of this effect, leaving the WSS in the optimal range for 40.9% of the surface at 21 days. Therefore, for achieving more mineralized tissue, the conventional manner of loading the perfusion bioreactors ( constant flow rate/velocity) should be changed to a decreasing flow over time in BTE experiments. This study provides an tool for finding the best fluid flow reduction strategy.

摘要

骨组织工程(BTE)实验表明,流体诱导的壁面剪应力(WSS)可刺激细胞产生矿化细胞外基质(ECM)。通过使培养基灌注多孔支架的生物反应器,可将WSS应用于接种的细胞。在BTE实验中,通常使用恒定流速。先前的研究发现,支架内的组织生长会导致WSS随时间增加。为了将WSS保持在报道的10 - 30 mPa最佳范围内,可随时间降低施加的外部流速。为了研究培养过程中外部流速需要降低多少才能将WSS保持在最佳范围内,我们在此进行了一项计算研究,该研究模拟了ECM的形成,并研究了恒定流体流动和不同流体流动降低方案对WSS的影响。结果发现,对于恒定和降低流体流动方案,WSS均未超过设定为60 mPa的临界值。然而,恒定流速导致暴露于最佳范围内WSS的细胞/ECM表面从培养开始时的50%减少到第21天的18.6%。随时间降低流体流动可以避免这种影响,在第21天时,40.9%的表面WSS保持在最佳范围内。因此,为了实现更多矿化组织,在BTE实验中,灌注生物反应器的传统加载方式(恒定流速/速度)应改为随时间降低流速。本研究提供了一种寻找最佳流体流动降低策略的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe3d/7315008/4d861a52791c/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验