Suppr超能文献

用于存档分割后的体素二进制医学数据的压缩算法性能比较

Performance comparison of compression algorithms for archiving segmented volumetric binary medical data.

作者信息

Fischer Felix, Selver M Alper, Dicle Oguz, Hillen Walter

机构信息

Nautavis GmbH, Linnich, Aachen, GERMANY.

Dokuz Eylul University, Dept. of Electrical and Electronics Eng., Izmir, TURKEY.

出版信息

Stud Health Technol Inform. 2014;205:1138-42.

Abstract

Archiving result of a segmentation task allows the representation of the segmented volume at a later time. The segmented volume can be stored in a binary format, which can be restored by a simple combination of the original data with this binary information. Since, the sizes of the segmented binary data have high memory requirements; a lossless compression method should be employed for efficient archiving. Thus, this study examines different approaches for compression and their suitability for restoring binary segmentation results. To evaluate the compressive properties, multiple test cases with diverse spatial structures and acquired with different modalities from clinical practice have been used. The results show that best performance is achieved with JBIG2 method both in terms of compression ratio and processing time.

摘要

分割任务的存档结果允许在之后的时间呈现分割后的体积。分割后的体积可以以二进制格式存储,通过将原始数据与该二进制信息进行简单组合即可恢复。由于分割后的二进制数据大小对内存要求很高,因此应采用无损压缩方法以实现高效存档。因此,本研究考察了不同的压缩方法及其对恢复二进制分割结果的适用性。为了评估压缩特性,使用了多个具有不同空间结构且从临床实践中以不同模态获取的测试用例。结果表明,就压缩率和处理时间而言,JBIG2方法均取得了最佳性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验