Mabotuwana Thusitha, Qian Yuechen, Sevenster Merlijn
Philips Research North America.
Stud Health Technol Inform. 2014;205:1143-7.
In the typical radiology reading workflow, a radiologist would go through an imaging study and annotate specific regions of interest. The radiologist has the option to select a suitable description (e.g., "calcification") from a list of predefined descriptions, or input the description directly as free-text. However, this process is time-consuming and the descriptions are not standardized over time, even for the same patient or the same general finding. In this paper, we describe an approach that presents finding descriptions based on textual information extracted from a patient's prior reports. Using 133 finding descriptions obtained in routine oncology workflow, we demonstrate how the system can be used to reduce keystrokes by up to 86% in about 38% of the instances. We have integrated our solution into a PACS and discuss how the system can be used in a clinical setting to improve the image annotation workflow efficiency and promote standardization of finding descriptions.
在典型的放射学读片工作流程中,放射科医生会浏览影像检查并标注特定的感兴趣区域。放射科医生可以从预定义描述列表中选择合适的描述(例如“钙化”),或者直接以自由文本形式输入描述。然而,这个过程很耗时,而且随着时间的推移,描述并不标准化,即使是针对同一患者或相同的一般发现。在本文中,我们描述了一种基于从患者既往报告中提取的文本信息来呈现发现描述的方法。使用在常规肿瘤工作流程中获得的133个发现描述,我们展示了该系统如何在约38%的情况下将击键次数减少多达86%。我们已将我们的解决方案集成到一个PACS中,并讨论了该系统如何在临床环境中用于提高图像标注工作流程效率并促进发现描述的标准化。