Suppr超能文献

用于临床的地面行走中自动初始接触检测

Automatic initial contact detection during overground walking for clinical use.

机构信息

Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Center for Sports Medicine and Sport Sciences Berlin, Germany.

Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Germany.

出版信息

Gait Posture. 2014 Sep;40(4):730-4. doi: 10.1016/j.gaitpost.2014.07.025. Epub 2014 Aug 8.

Abstract

The division of gait into cycles is crucial for identifying deficits in locomotion, particularly to monitor disease progression or rehabilitative recovery. Initial contact (IC) events are often used to separate movement into repetitive cycles yet automatic methods for IC identification in pathological gait are limited in both number and capacity. The aim of this work was to develop a more precise algorithm in IC detection. A projected heel markers distance (PHMD) algorithm is presented here and compared for accuracy to the high pass algorithm (HPA) in IC identification. Kinematic gait data from two clinical cohorts were analyzed and processed automatically for IC detection: (1) unilateral total hip arthroplasty (THA) patients (n=27) and (2) cerebral palsy pediatric (CPP) patients (n=20). IC events determined by the two algorithms were benchmarked against the IC events detected manually and from force plates. The PHMD method detected 96.6% IC events in THA patients and 99.1% in CPP patients with an average error of 5.3 ms and 18.4 ms. The HPA method detected 99.1% IC events in THA patients and 97.3% IC events in CPP patients, with an average error of 57.5 ms and 10.2 ms. PHMD identified no superfluous IC events, whereas 51.5% of all THA IC and 47.6% of CPP IC were superfluous events requiring manual deletion with HPA. With the superior comparison against the current gold standard, the PHMD algorithm appears valid for a wide spectrum of clinical data sets and allows for precise, fully automatic processing of kinematic gait data without additional sensors, triggers, or force plates.

摘要

步态的周期划分对于识别运动障碍至关重要,尤其是用于监测疾病进展或康复恢复情况。初始接触(IC)事件通常用于将运动分为重复周期,但在病理性步态中,用于 IC 识别的自动方法在数量和能力上都受到限制。本研究旨在开发一种更精确的 IC 检测算法。这里提出了一种投影足跟标记距离(PHMD)算法,并将其与 IC 识别中的高通滤波器算法(HPA)进行了准确性比较。对来自两个临床队列的运动学步态数据进行了分析和自动处理,以进行 IC 检测:(1)单侧全髋关节置换术(THA)患者(n=27)和(2)脑瘫儿科(CPP)患者(n=20)。两种算法确定的 IC 事件与手动和力板检测的 IC 事件进行了基准测试。PHMD 方法在 THA 患者中检测到 96.6%的 IC 事件,在 CPP 患者中检测到 99.1%的 IC 事件,平均误差为 5.3ms 和 18.4ms。HPA 方法在 THA 患者中检测到 99.1%的 IC 事件,在 CPP 患者中检测到 97.3%的 IC 事件,平均误差为 57.5ms 和 10.2ms。PHMD 未检测到多余的 IC 事件,而 HPA 检测到 51.5%的所有 THA IC 和 47.6%的 CPP IC 是多余的,需要手动删除。与当前的黄金标准相比,PHMD 算法在广泛的临床数据集上是有效的,并且允许对运动学步态数据进行精确、全自动的处理,而无需额外的传感器、触发器或力板。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验