Schroeder Michael P, Rubio-Perez Carlota, Tamborero David, Gonzalez-Perez Abel, Lopez-Bigas Nuria
Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, E08003 Barcelona and Institució Catalana de Recerca i Estudis Avançats (ICREA), E08010 Barcelona, Spain.
Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, E08003 Barcelona and Institució Catalana de Recerca i Estudis Avançats (ICREA), E08010 Barcelona, Spain Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, E08003 Barcelona and Institució Catalana de Recerca i Estudis Avançats (ICREA), E08010 Barcelona, Spain.
Bioinformatics. 2014 Sep 1;30(17):i549-55. doi: 10.1093/bioinformatics/btu467.
Several computational methods have been developed to identify cancer drivers genes-genes responsible for cancer development upon specific alterations. These alterations can cause the loss of function (LoF) of the gene product, for instance, in tumor suppressors, or increase or change its activity or function, if it is an oncogene. Distinguishing between these two classes is important to understand tumorigenesis in patients and has implications for therapy decision making. Here, we assess the capacity of multiple gene features related to the pattern of genomic alterations across tumors to distinguish between activating and LoF cancer genes, and we present an automated approach to aid the classification of novel cancer drivers according to their role.
OncodriveROLE is a machine learning-based approach that classifies driver genes according to their role, using several properties related to the pattern of alterations across tumors. The method shows an accuracy of 0.93 and Matthew's correlation coefficient of 0.84 classifying genes in the Cancer Gene Census. The OncodriveROLE classifier, its results when applied to two lists of predicted cancer drivers and TCGA-derived mutation and copy number features used by the classifier are available at http://bg.upf.edu/oncodrive-role.
The R implementation of the OncodriveROLE classifier is available at http://bg.upf.edu/oncodrive-role.
Supplementary data are available at Bioinformatics online.
已经开发了几种计算方法来识别癌症驱动基因——即那些在发生特定改变后导致癌症发展的基因。这些改变可能导致基因产物功能丧失(LoF),例如在肿瘤抑制基因中,或者如果是癌基因,则会增加或改变其活性或功能。区分这两类基因对于理解患者的肿瘤发生过程很重要,并且对治疗决策有影响。在这里,我们评估了与肿瘤间基因组改变模式相关的多个基因特征区分激活型和功能丧失型癌症基因的能力,并提出了一种自动化方法来根据其作用辅助对新型癌症驱动基因进行分类。
OncodriveROLE是一种基于机器学习的方法,它根据驱动基因的作用进行分类,使用了与肿瘤间改变模式相关的几个属性。该方法在对癌症基因普查中的基因进行分类时,准确率为0.93,马修斯相关系数为0.84。OncodriveROLE分类器、其应用于两个预测癌症驱动基因列表时的结果以及分类器使用的TCGA衍生突变和拷贝数特征可在http://bg.upf.edu/oncodrive-role获取。
OncodriveROLE分类器的R实现可在http://bg.upf.edu/oncodrive-role获取。
补充数据可在《生物信息学》在线获取。