文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过整合表观遗传学 DNA 和基因表达(iEDGE)数据分析鉴定候选癌症驱动基因。

Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.

机构信息

Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, 02118, USA.

Bioinformatics Program, Boston University, Boston, MA, 02215, USA.

出版信息

Sci Rep. 2019 Nov 15;9(1):16904. doi: 10.1038/s41598-019-52886-z.


DOI:10.1038/s41598-019-52886-z
PMID:31729402
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6858347/
Abstract

The emergence of large-scale multi-omics data warrants method development for data integration. Genomic studies from cancer patients have identified epigenetic and genetic regulators - such as methylation marks, somatic mutations, and somatic copy number alterations (SCNAs), among others - as predictive features of cancer outcome. However, identification of "driver genes" associated with a given alteration remains a challenge. To this end, we developed a computational tool, iEDGE, to model cis and trans effects of (epi-)DNA alterations and identify potential cis driver genes, where cis and trans genes denote those genes falling within and outside the genomic boundaries of a given (epi-)genetic alteration, respectively. iEDGE first identifies the cis and trans gene expression signatures associated with the presence/absence of a particular epi-DNA alteration across samples. It then applies tests of statistical mediation to determine the cis genes predictive of the trans gene expression. Finally, cis and trans effects are annotated by pathway enrichment analysis to gain insights into the underlying regulatory networks. We used iEDGE to perform integrative analysis of SCNAs and gene expression data from breast cancer and 18 additional cancer types included in The Cancer Genome Atlas (TCGA). Notably, cis gene drivers identified by iEDGE were found to be significantly enriched for known driver genes from multiple compendia of validated oncogenes and tumor suppressors, suggesting that the remainder are of equal importance. Furthermore, predicted drivers were enriched for functionally relevant cancer genes with amplification-driven dependencies, which are of potential prognostic and therapeutic value. All the analyses results are accessible at https://montilab.bu.edu/iEDGE. In summary, integrative analysis of SCNAs and gene expression using iEDGE successfully identified known cancer driver genes and putative cancer therapeutic targets across 19 cancer types in the TCGA. The proposed method can easily be applied to the integration of gene expression profiles with other epi-DNA assays in a variety of disease contexts.

摘要

大规模多组学数据的出现需要开发数据集成方法。来自癌症患者的基因组研究已经确定了表观遗传和遗传调节剂 - 如甲基化标记、体细胞突变和体细胞拷贝数改变 (SCNAs) 等 - 作为癌症结果的预测特征。然而,确定与给定改变相关的“驱动基因”仍然是一个挑战。为此,我们开发了一种计算工具 iEDGE,用于模拟 (epi-)DNA 改变的顺式和反式效应,并识别潜在的顺式驱动基因,其中顺式和反式基因分别表示那些位于给定 (epi-)遗传改变的基因组边界内和外的基因。iEDGE 首先确定与特定 epi-DNA 改变在样本中存在/不存在相关的顺式和反式基因表达特征。然后,它应用统计中介检验来确定预测反式基因表达的顺式基因。最后,通过途径富集分析注释顺式和反式效应,以深入了解潜在的调控网络。我们使用 iEDGE 对来自乳腺癌和 TCGA 中包含的 18 种其他癌症类型的 SCNAs 和基因表达数据进行综合分析。值得注意的是,iEDGE 鉴定的顺式基因驱动因子被发现明显富集了来自多个验证的致癌基因和肿瘤抑制因子综合目录的已知驱动基因,这表明其余的同样重要。此外,预测的驱动因子富集了具有扩增驱动依赖性的功能相关癌症基因,这些基因具有潜在的预后和治疗价值。所有分析结果均可在 https://montilab.bu.edu/iEDGE 上获取。总之,使用 iEDGE 对 SCNAs 和基因表达进行综合分析成功地在 TCGA 中的 19 种癌症类型中识别了已知的癌症驱动基因和潜在的癌症治疗靶点。该方法可以很容易地应用于在各种疾病情况下将基因表达谱与其他 epi-DNA 检测相结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae46/6858347/778cfbeb5553/41598_2019_52886_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae46/6858347/daaecfd4ea1a/41598_2019_52886_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae46/6858347/13547a271b89/41598_2019_52886_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae46/6858347/80d378a3bed4/41598_2019_52886_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae46/6858347/e74635cb3548/41598_2019_52886_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae46/6858347/778cfbeb5553/41598_2019_52886_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae46/6858347/daaecfd4ea1a/41598_2019_52886_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae46/6858347/13547a271b89/41598_2019_52886_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae46/6858347/80d378a3bed4/41598_2019_52886_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae46/6858347/e74635cb3548/41598_2019_52886_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae46/6858347/778cfbeb5553/41598_2019_52886_Fig5_HTML.jpg

相似文献

[1]
Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.

Sci Rep. 2019-11-15

[2]
ProcessDriver: A computational pipeline to identify copy number drivers and associated disrupted biological processes in cancer.

Genomics. 2017-7

[3]
A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.

Biochem Genet. 2019-5-21

[4]
Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.

Bioinformatics. 2017-2-15

[5]
Identification of driver copy number alterations in diverse cancer types and application in drug repositioning.

Mol Oncol. 2017-8-3

[6]
The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.

Molecules. 2018-1-24

[7]
Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer.

Breast Cancer Res Treat. 2015-7

[8]
Interaction-Based Feature Selection for Uncovering Cancer Driver Genes Through Copy Number-Driven Expression Level.

J Comput Biol. 2017-2

[9]
Identification of druggable cancer driver genes amplified across TCGA datasets.

PLoS One. 2014-5-29

[10]
Bayesian variable selection with graphical structure learning: Applications in integrative genomics.

PLoS One. 2018-7-30

引用本文的文献

[1]
Revealing cancer driver genes through integrative transcriptomic and epigenomic analyses with Moonlight.

PLoS Comput Biol. 2025-4-21

[2]
The role of dysregulated metabolism and associated genes in gastric cancer initiation and development.

Transl Cancer Res. 2024-7-31

[3]
Prediction of cancer driver genes and mutations: the potential of integrative computational frameworks.

Brief Bioinform. 2024-1-22

[4]
Widespread perturbation of ETS factor binding sites in cancer.

Nat Commun. 2023-2-17

[5]
Molecular Pathology of Lung Cancer.

Cold Spring Harb Perspect Med. 2022-3-1

本文引用的文献

[1]
Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration.

Nat Commun. 2018-11-2

[2]
TRIP13 is a predictor for poor prognosis and regulates cell proliferation, migration and invasion in prostate cancer.

Int J Biol Macromol. 2018-9-26

[3]
TPX2/Aurora kinase A signaling as a potential therapeutic target in genomically unstable cancer cells.

Oncogene. 2018-9-3

[4]
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes.

Nat Med. 2018-4-30

[5]
TRIP13 promotes tumor growth and is associated with poor prognosis in colorectal cancer.

Cell Death Dis. 2018-3-14

[6]
MCL-1 is a prognostic indicator and drug target in breast cancer.

Cell Death Dis. 2018-1-16

[7]
Basal-A Triple-Negative Breast Cancer Cells Selectively Rely on RNA Splicing for Survival.

Mol Cancer Ther. 2017-9-6

[8]
iGC-an integrated analysis package of gene expression and copy number alteration.

BMC Bioinformatics. 2017-1-14

[9]
UniProt: the universal protein knowledgebase.

Nucleic Acids Res. 2017-1-4

[10]
COSMIC: somatic cancer genetics at high-resolution.

Nucleic Acids Res. 2017-1-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索