Misyak Jennifer B, Christiansen Morten H, Bruce Tomblin J
Department of Psychology, Cornell UniversityDepartment of Communication Sciences and Disorders, University of Iowa.
Top Cogn Sci. 2010 Jan;2(1):138-53. doi: 10.1111/j.1756-8765.2009.01072.x.
Prediction-based processes appear to play an important role in language. Few studies, however, have sought to test the relationship within individuals between prediction learning and natural language processing. This paper builds upon existing statistical learning work using a novel paradigm for studying the on-line learning of predictive dependencies. Within this paradigm, a new "prediction task" is introduced that provides a sensitive index of individual differences for developing probabilistic sequential expectations. Across three interrelated experiments, the prediction task and results thereof are used to bridge knowledge of the empirical relation between statistical learning and language within the context of nonadjacency processing. We first chart the trajectory for learning nonadjacencies, documenting individual differences in prediction learning. Subsequent simple recurrent network simulations then closely capture human performance patterns in the new paradigm. Finally, individual differences in prediction performances are shown to strongly correlate with participants' sentence processing of complex, long-distance dependencies in natural language.
基于预测的过程似乎在语言中起着重要作用。然而,很少有研究试图测试个体内部预测学习与自然语言处理之间的关系。本文基于现有的统计学习工作,采用一种新颖的范式来研究预测依赖关系的在线学习。在这个范式中,引入了一个新的“预测任务”,它为发展概率序列期望提供了一个个体差异的敏感指标。在三个相互关联的实验中,预测任务及其结果被用于在非邻接处理的背景下,搭建起统计学习与语言之间实证关系的知识桥梁。我们首先绘制学习非邻接关系的轨迹,记录预测学习中的个体差异。随后的简单循环网络模拟紧密捕捉了新范式中的人类表现模式。最后,预测表现的个体差异被证明与参与者对自然语言中复杂的长距离依赖关系的句子处理能力密切相关。