Suppr超能文献

重新定义统计学习中的“学习”:在线测量揭示了视觉规律的同化情况?

Redefining "Learning" in Statistical Learning: What Does an Online Measure Reveal About the Assimilation of Visual Regularities?

作者信息

Siegelman Noam, Bogaerts Louisa, Kronenfeld Ofer, Frost Ram

机构信息

Department of Psychology, The Hebrew University of Jerusalem.

Cognitive Psychology Laboratory, CNRS and University Aix-Marseille.

出版信息

Cogn Sci. 2018 Jun;42 Suppl 3(Suppl 3):692-727. doi: 10.1111/cogs.12556. Epub 2017 Oct 7.

Abstract

From a theoretical perspective, most discussions of statistical learning (SL) have focused on the possible "statistical" properties that are the object of learning. Much less attention has been given to defining what "learning" is in the context of "statistical learning." One major difficulty is that SL research has been monitoring participants' performance in laboratory settings with a strikingly narrow set of tasks, where learning is typically assessed offline, through a set of two-alternative-forced-choice questions, which follow a brief visual or auditory familiarization stream. Is that all there is to characterizing SL abilities? Here we adopt a novel perspective for investigating the processing of regularities in the visual modality. By tracking online performance in a self-paced SL paradigm, we focus on the trajectory of learning. In a set of three experiments we show that this paradigm provides a reliable and valid signature of SL performance, and it offers important insights for understanding how statistical regularities are perceived and assimilated in the visual modality. This demonstrates the promise of integrating different operational measures to our theory of SL.

摘要

从理论角度来看,大多数关于统计学习(SL)的讨论都集中在作为学习对象的可能的“统计”属性上。而在“统计学习”的背景下,对于“学习”的定义却很少有人关注。一个主要的困难在于,统计学习研究一直在实验室环境中通过一组极其有限的任务来监测参与者的表现,在这些任务中,学习通常是通过一组二选一的强制选择问题进行离线评估的,这些问题是在简短的视觉或听觉熟悉信息流之后提出的。这就是表征统计学习能力的全部内容吗?在这里,我们采用一种新颖的视角来研究视觉模态中规律的处理过程。通过在一个自定进度的统计学习范式中跟踪在线表现,我们关注学习的轨迹。在一组三个实验中,我们表明这种范式提供了统计学习表现的可靠且有效的特征,并且它为理解统计规律如何在视觉模态中被感知和吸收提供了重要的见解。这证明了将不同的操作测量方法整合到我们的统计学习理论中的前景。

相似文献

3
Towards a theory of individual differences in statistical learning.迈向统计学习中个体差异的理论。
Philos Trans R Soc Lond B Biol Sci. 2017 Jan 5;372(1711). doi: 10.1098/rstb.2016.0059.
8
Online Statistical Learning in Developmental Language Disorder.发育性语言障碍中的在线统计学习
Front Hum Neurosci. 2021 Sep 27;15:715818. doi: 10.3389/fnhum.2021.715818. eCollection 2021.

引用本文的文献

5
The successor representation subserves hierarchical abstraction for goal-directed behavior.后继表示服务于目标导向行为的层次抽象。
PLoS Comput Biol. 2024 Feb 20;20(2):e1011312. doi: 10.1371/journal.pcbi.1011312. eCollection 2024 Feb.
7
Assessing the impact of attention fluctuations on statistical learning.评估注意力波动对统计学习的影响。
Atten Percept Psychophys. 2024 May;86(4):1086-1107. doi: 10.3758/s13414-023-02805-2. Epub 2023 Nov 20.

本文引用的文献

2
Online neural monitoring of statistical learning.统计学习的在线神经监测。
Cortex. 2017 May;90:31-45. doi: 10.1016/j.cortex.2017.02.004. Epub 2017 Feb 24.
3
Towards a theory of individual differences in statistical learning.迈向统计学习中个体差异的理论。
Philos Trans R Soc Lond B Biol Sci. 2017 Jan 5;372(1711). doi: 10.1098/rstb.2016.0059.
6
Dissociable behavioural outcomes of visual statistical learning.视觉统计学习的可分离行为结果
Vis cogn. 2016;23(9-10):1072-1097. doi: 10.1080/13506285.2016.1139647. Epub 2016 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验