Kacprzyk-Stokowiec Aleksandra, Kulma Magdalena, Traczyk Gabriela, Kwiatkowska Katarzyna, Sobota Andrzej, Dadlez Michał
From the Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego St., 02-106 Warsaw, Poland.
Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland, and.
J Biol Chem. 2014 Oct 10;289(41):28738-52. doi: 10.1074/jbc.M114.577981. Epub 2014 Aug 27.
Perfringolysin O (PFO) is a toxic protein that binds to cholesterol-containing membranes, oligomerizes, and forms a β-barrel transmembrane pore, leading to cell lysis. Previous studies have uncovered the sequence of events in this multistage structural transition to a considerable detail, but the underlying molecular mechanisms are not yet fully understood. By measuring hydrogen-deuterium exchange patterns of peptide bond amide protons monitored by mass spectrometry (MS), we have mapped structural changes in PFO and its variant bearing a point mutation during incorporation to the lipid environment. We have defined all regions that undergo structural changes caused by the interaction with the lipid environment both in wild-type PFO, thus providing new experimental constraints for molecular modeling of the pore formation process, and in a point mutant, W165T, for which the pore formation process is known to be inefficient. We have demonstrated that point mutation W165T causes destabilization of protein solution structure, strongest for domain D1, which interrupts the pathway of structural transitions in other domains necessary for proper oligomerization in the membrane. In PFO, the strongest changes accompanying binding to the membrane focus in D1; the C-terminal part of D4; and strands β1, β4, and β5 of D3. These changes were much weaker for PFO(W165T) lipo where substantial stabilization was observed only in D4 domain. In this study, the application of hydrogen-deuterium exchange analysis monitored by MS provided new insight into conformational changes of PFO associated with the membrane binding, oligomerization, and lytic pore formation.
产气荚膜梭菌溶血素O(PFO)是一种毒性蛋白,它能与含胆固醇的膜结合,形成寡聚体,并形成β-桶状跨膜孔,导致细胞裂解。先前的研究已经相当详细地揭示了这一多阶段结构转变中的事件序列,但潜在的分子机制尚未完全了解。通过测量质谱(MS)监测的肽键酰胺质子的氢-氘交换模式,我们绘制了PFO及其携带点突变的变体在融入脂质环境过程中的结构变化。我们已经确定了野生型PFO中所有因与脂质环境相互作用而发生结构变化的区域,从而为孔形成过程的分子建模提供了新的实验约束条件,同时也确定了点突变体W165T中发生结构变化的区域,已知该点突变体的孔形成过程效率低下。我们已经证明,点突变W165T会导致蛋白质溶液结构不稳定,对结构域D1的影响最强,这会中断膜中正确寡聚化所需的其他结构域的结构转变途径。在PFO中,与膜结合时伴随的最强变化集中在D1;D4的C末端部分;以及D3的β1、β4和β5链。对于PFO(W165T)脂质体,这些变化要弱得多,仅在D4结构域观察到显著的稳定作用。在本研究中,通过MS监测的氢-氘交换分析的应用为与膜结合、寡聚化和溶细胞孔形成相关的PFO构象变化提供了新的见解。