Suppr超能文献

产气荚膜梭菌溶血素O D1结构域在引发导致膜穿孔孔道的结构转变中的关键作用:一项氢-氘交换研究

Crucial role of perfringolysin O D1 domain in orchestrating structural transitions leading to membrane-perforating pores: a hydrogen-deuterium exchange study.

作者信息

Kacprzyk-Stokowiec Aleksandra, Kulma Magdalena, Traczyk Gabriela, Kwiatkowska Katarzyna, Sobota Andrzej, Dadlez Michał

机构信息

From the Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego St., 02-106 Warsaw, Poland.

Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland, and.

出版信息

J Biol Chem. 2014 Oct 10;289(41):28738-52. doi: 10.1074/jbc.M114.577981. Epub 2014 Aug 27.

Abstract

Perfringolysin O (PFO) is a toxic protein that binds to cholesterol-containing membranes, oligomerizes, and forms a β-barrel transmembrane pore, leading to cell lysis. Previous studies have uncovered the sequence of events in this multistage structural transition to a considerable detail, but the underlying molecular mechanisms are not yet fully understood. By measuring hydrogen-deuterium exchange patterns of peptide bond amide protons monitored by mass spectrometry (MS), we have mapped structural changes in PFO and its variant bearing a point mutation during incorporation to the lipid environment. We have defined all regions that undergo structural changes caused by the interaction with the lipid environment both in wild-type PFO, thus providing new experimental constraints for molecular modeling of the pore formation process, and in a point mutant, W165T, for which the pore formation process is known to be inefficient. We have demonstrated that point mutation W165T causes destabilization of protein solution structure, strongest for domain D1, which interrupts the pathway of structural transitions in other domains necessary for proper oligomerization in the membrane. In PFO, the strongest changes accompanying binding to the membrane focus in D1; the C-terminal part of D4; and strands β1, β4, and β5 of D3. These changes were much weaker for PFO(W165T) lipo where substantial stabilization was observed only in D4 domain. In this study, the application of hydrogen-deuterium exchange analysis monitored by MS provided new insight into conformational changes of PFO associated with the membrane binding, oligomerization, and lytic pore formation.

摘要

产气荚膜梭菌溶血素O(PFO)是一种毒性蛋白,它能与含胆固醇的膜结合,形成寡聚体,并形成β-桶状跨膜孔,导致细胞裂解。先前的研究已经相当详细地揭示了这一多阶段结构转变中的事件序列,但潜在的分子机制尚未完全了解。通过测量质谱(MS)监测的肽键酰胺质子的氢-氘交换模式,我们绘制了PFO及其携带点突变的变体在融入脂质环境过程中的结构变化。我们已经确定了野生型PFO中所有因与脂质环境相互作用而发生结构变化的区域,从而为孔形成过程的分子建模提供了新的实验约束条件,同时也确定了点突变体W165T中发生结构变化的区域,已知该点突变体的孔形成过程效率低下。我们已经证明,点突变W165T会导致蛋白质溶液结构不稳定,对结构域D1的影响最强,这会中断膜中正确寡聚化所需的其他结构域的结构转变途径。在PFO中,与膜结合时伴随的最强变化集中在D1;D4的C末端部分;以及D3的β1、β4和β5链。对于PFO(W165T)脂质体,这些变化要弱得多,仅在D4结构域观察到显著的稳定作用。在本研究中,通过MS监测的氢-氘交换分析的应用为与膜结合、寡聚化和溶细胞孔形成相关的PFO构象变化提供了新的见解。

相似文献

2
R468A mutation in perfringolysin O destabilizes toxin structure and induces membrane fusion.
Biochim Biophys Acta Biomembr. 2017 Jun;1859(6):1075-1088. doi: 10.1016/j.bbamem.2017.03.001. Epub 2017 Mar 2.
3
Fine-tuning of the stability of β-strands by Y181 in perfringolysin O directs the prepore to pore transition.
Biochim Biophys Acta Biomembr. 2019 Jan;1861(1):110-122. doi: 10.1016/j.bbamem.2018.08.008. Epub 2018 Aug 21.
7
Interaction of Cholesterol with Perfringolysin O: What Have We Learned from Functional Analysis?
Toxins (Basel). 2017 Nov 23;9(12):381. doi: 10.3390/toxins9120381.
8
Oligomerization and hemolytic properties of the C-terminal domain of pyolysin, a cholesterol-dependent cytolysin.
Biochem Cell Biol. 2013 Apr;91(2):59-66. doi: 10.1139/bcb-2012-0065. Epub 2013 Mar 18.
10
Disulfide-bond scanning reveals assembly state and β-strand tilt angle of the PFO β-barrel.
Nat Chem Biol. 2013 Jun;9(6):383-9. doi: 10.1038/nchembio.1228. Epub 2013 Apr 7.

引用本文的文献

1
Hexameric-Based Hierarchy in the Sizes of a Cytolysin Pore-Forming Complex.
Biomolecules. 2025 Mar 17;15(3):424. doi: 10.3390/biom15030424.
2
The MitoLuc Assay System for Accurate Real-Time Monitoring of Mitochondrial Protein Import Within Mammalian Cells.
J Mol Biol. 2023 Jul 1;435(13):168129. doi: 10.1016/j.jmb.2023.168129. Epub 2023 Apr 25.
3
Single Point Mutation and Its Role in Specific Pathogenicity to Reveal the Mechanism of Related Protein Families.
Microbiol Spectr. 2022 Oct 26;10(5):e0092322. doi: 10.1128/spectrum.00923-22. Epub 2022 Oct 10.
6
Mapping the Interaction Network of Key Proteins Involved in Histone mRNA Generation: A Hydrogen/Deuterium Exchange Study.
J Mol Biol. 2016 Mar 27;428(6):1180-1196. doi: 10.1016/j.jmb.2016.01.031. Epub 2016 Feb 6.
8
Perfringolysin O: The Underrated Clostridium perfringens Toxin?
Toxins (Basel). 2015 May 14;7(5):1702-21. doi: 10.3390/toxins7051702.
9
Computational modeling of membrane proteins.
Proteins. 2015 Jan;83(1):1-24. doi: 10.1002/prot.24703. Epub 2014 Nov 19.

本文引用的文献

2
Hydrogen exchange mass spectrometry of functional membrane-bound chemotaxis receptor complexes.
Biochemistry. 2013 Dec 10;52(49):8833-42. doi: 10.1021/bi401261b. Epub 2013 Nov 26.
3
Oligomerization interface of RAGE receptor revealed by MS-monitored hydrogen deuterium exchange.
PLoS One. 2013 Oct 1;8(10):e76353. doi: 10.1371/journal.pone.0076353. eCollection 2013.
4
Mass spectrometry supported determination of protein complex structure.
Curr Opin Struct Biol. 2013 Apr;23(2):252-60. doi: 10.1016/j.sbi.2013.02.008. Epub 2013 Mar 20.
5
Mass spectrometry-based methods to study protein architecture and dynamics.
Protein Sci. 2013 May;22(5):530-44. doi: 10.1002/pro.2238. Epub 2013 Mar 26.
7
Monomer-monomer interactions propagate structural transitions necessary for pore formation by the cholesterol-dependent cytolysins.
J Biol Chem. 2012 Jul 13;287(29):24534-43. doi: 10.1074/jbc.M112.380139. Epub 2012 May 29.
8
Membrane assembly of the cholesterol-dependent cytolysin pore complex.
Biochim Biophys Acta. 2012 Apr;1818(4):1028-38. doi: 10.1016/j.bbamem.2011.07.036. Epub 2011 Jul 31.
9
Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs.
Mol Cell Proteomics. 2011 Sep;10(9):M111.010876. doi: 10.1074/mcp.M111.010876. Epub 2011 Jun 29.
10
Intertwined structured and unstructured regions of exRAGE identified by monitoring hydrogen-deuterium exchange.
J Mol Biol. 2010 Oct 15;403(1):52-65. doi: 10.1016/j.jmb.2010.08.027. Epub 2010 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验