Departamento de Física, Universidade do Estado de Santa Catarina, 89219-710 Joinville, Brazil.
Departamento de Física, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil.
Phys Rev Lett. 2013 Mar 15;110(11):114102. doi: 10.1103/PhysRevLett.110.114102. Epub 2013 Mar 14.
Stable periodic structures containing optimal ratchet transport, recently found in the parameter space dissipation versus ratchet parameter by [A. Celestino et al. Phys. Rev. Lett. 106, 234101 (2011)], are shown to be resistant to reasonable temperatures, reinforcing the expectation that they are essential to explain the optimal ratchet transport in nature. Critical temperatures for their destruction, valid from the overdamping to close to the conservative limits, are obtained numerically and shown to be connected to the current efficiency, given here analytically. A region where thermal activation of the rachet current takes place is also found, and its underlying mechanism is unveiled. Results are demonstrated for a discrete ratchet model and generalized to the Langevin equation with an additional external oscillating force.
稳定的周期结构包含最优的棘轮输运,最近在 [A. Celestino 等人,物理评论快报 106, 234101 (2011)] 的耗散与棘轮参数的参数空间中被发现,结果表明它们在合理的温度下具有抗性,这加强了它们对于解释自然界中最优棘轮输运的重要性的预期。通过数值方法获得了从过阻尼到接近保守极限的临界温度,并显示它们与电流效率有关,这里给出了分析结果。还发现了一个棘轮电流热激活发生的区域,并揭示了其潜在的机制。结果展示了一个离散的棘轮模型,并推广到带有附加外部振荡力的 Langevin 方程。