Roling Oliver, Mardyukov Artur, Lamping Sebastian, Vonhören Benjamin, Rinnen Stefan, Arlinghaus Heinrich F, Studer Armido, Ravoo Bart Jan
Organisch-Chemisches Institut and Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany.
Org Biomol Chem. 2014 Oct 21;12(39):7828-35. doi: 10.1039/c4ob01379d. Epub 2014 Aug 28.
Bioorthogonal ligation methods are the focus of current research due to their versatile applications in biotechnology and materials science for post-functionalization and immobilization of biomolecules. Recently, inverse electron demand Diels-Alder (iEDDA) reactions employing 1,2,4,5-tetrazines as electron deficient dienes emerged as powerful tools in this field. We adapted iEDDA in microcontact chemistry (μCC) in order to create enhanced surface functions. μCC is a straightforward soft-lithography technique which enables fast and large area patterning with high pattern resolutions. In this work, tetrazine functionalized surfaces were reacted with carbohydrates conjugated with norbornene or cyclooctyne acting as strained electron rich dienophiles employing μCC. It was possible to create monofunctional as well as bifunctional substrates which were specifically addressable by proteins. Furthermore we structured glass supported alkene terminated self-assembled monolayers with a tetrazine conjugated atom transfer radical polymerization (ATRP) initiator enabling surface grafted polymerizations of poly(methylacrylate) brushes. The success of the surface initiated iEDDA via μCC as well as the functionalization with natural and synthetic polymers was verified via fluorescence and optical microscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).
生物正交连接方法由于其在生物技术和材料科学中用于生物分子后功能化和固定化的广泛应用而成为当前研究的焦点。最近,采用1,2,4,5-四嗪作为缺电子二烯的逆电子需求狄尔斯-阿尔德(iEDDA)反应成为该领域的强大工具。我们将iEDDA应用于微接触化学(μCC)中,以创建增强的表面功能。μCC是一种简单的软光刻技术,能够以高图案分辨率进行快速大面积图案化。在这项工作中,使用μCC使四嗪功能化的表面与与降冰片烯或环辛炔共轭的碳水化合物反应,降冰片烯或环辛炔作为富电子的亲双烯体。可以创建单功能和双功能底物,蛋白质可以特异性地与之结合。此外,我们用与四嗪共轭的原子转移自由基聚合(ATRP)引发剂构建了玻璃支撑的烯烃封端的自组装单分子层,实现了聚(甲基丙烯酸甲酯)刷的表面接枝聚合。通过荧光和光学显微镜、X射线光电子能谱(XPS)、飞行时间二次离子质谱(ToF-SIMS)、原子力显微镜(AFM)和衰减全反射傅里叶变换红外光谱(ATR-FTIR)验证了通过μCC进行的表面引发iEDDA以及天然和合成聚合物功能化的成功。