Suppr超能文献

随机网络上的有限模仿传染:混沌、普遍性与不可预测性。

Limited imitation contagion on random networks: chaos, universality, and unpredictability.

作者信息

Dodds Peter Sheridan, Harris Kameron Decker, Danforth Christopher M

机构信息

Department of Mathematics and Statistics, Computational Story Lab, Vermont Complex Systems Center, and Vermont Advanced Computing Core, The University of Vermont, Burlington, Vermont 05401, USA.

出版信息

Phys Rev Lett. 2013 Apr 12;110(15):158701. doi: 10.1103/PhysRevLett.110.158701. Epub 2013 Apr 8.

Abstract

We study a family of binary state, socially inspired contagion models which incorporate imitation limited by an aversion to complete conformity. We uncover rich behavior in our models whether operating with either probabilistic or deterministic individual response functions on both dynamic and fixed random networks. In particular, we find significant variation in the limiting behavior of a population's infected fraction, ranging from steady state to chaotic. We show that period doubling arises as we increase the average node degree, and that the universality class of this well-known route to chaos depends on the interaction structure of random networks rather than the microscopic behavior of individual nodes. We find that increasing the fixedness of the system tends to stabilize the infected fraction, yet disjoint, multiple equilibria are possible depending solely on the choice of the initially infected node.

摘要

我们研究了一类二元状态、受社会启发的传染模型,这类模型纳入了因厌恶完全一致而受到限制的模仿行为。无论在动态和固定随机网络上使用概率性还是确定性个体响应函数,我们的模型都展现出丰富的行为。特别是,我们发现群体感染比例的极限行为存在显著差异,范围从稳态到混沌。我们表明,随着平均节点度的增加会出现倍周期分岔,并且这条通往混沌的著名路径的普适类取决于随机网络的相互作用结构,而非单个节点的微观行为。我们发现,增加系统的固定性往往会使感染比例趋于稳定,但仅根据初始感染节点的选择,可能会出现不相交的多个平衡点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验