Suppr超能文献

基于图集成提升的不平衡噪声图流分类。

Graph ensemble boosting for imbalanced noisy graph stream classification.

出版信息

IEEE Trans Cybern. 2015 May;45(5):940-54. doi: 10.1109/TCYB.2014.2341031. Epub 2014 Aug 27.

Abstract

Many applications involve stream data with structural dependency, graph representations, and continuously increasing volumes. For these applications, it is very common that their class distributions are imbalanced with minority (or positive) samples being only a small portion of the population, which imposes significant challenges for learning models to accurately identify minority samples. This problem is further complicated with the presence of noise, because they are similar to minority samples and any treatment for the class imbalance may falsely focus on the noise and result in deterioration of accuracy. In this paper, we propose a classification model to tackle imbalanced graph streams with noise. Our method, graph ensemble boosting, employs an ensemble-based framework to partition graph stream into chunks each containing a number of noisy graphs with imbalanced class distributions. For each individual chunk, we propose a boosting algorithm to combine discriminative subgraph pattern selection and model learning as a unified framework for graph classification. To tackle concept drifting in graph streams, an instance level weighting mechanism is used to dynamically adjust the instance weight, through which the boosting framework can emphasize on difficult graph samples. The classifiers built from different graph chunks form an ensemble for graph stream classification. Experiments on real-life imbalanced graph streams demonstrate clear benefits of our boosting design for handling imbalanced noisy graph stream.

摘要

许多应用涉及具有结构依赖性、图形表示和不断增加的卷的流数据。对于这些应用,它们的类分布通常是不平衡的,少数(或正)样本仅占总体的一小部分,这给学习模型准确识别少数样本带来了很大的挑战。由于噪声与少数样本相似,因此存在噪声会使这个问题更加复杂,任何针对类不平衡的处理都可能错误地关注噪声,并导致准确性下降。在本文中,我们提出了一种分类模型来处理带噪声的不平衡图流。我们的方法,图集成提升,采用基于集成的框架将图流划分为多个块,每个块包含多个具有不平衡类分布的噪声图。对于每个单独的块,我们提出了一种提升算法,将有区别的子图模式选择和模型学习结合起来,作为图形分类的统一框架。为了解决图流中的概念漂移,我们使用实例级加权机制来动态调整实例权重,通过该机制,提升框架可以强调困难的图样本。来自不同图块的分类器形成了一个图流分类的集成。在真实的不平衡图流上的实验证明了我们的提升设计在处理不平衡噪声图流方面的明显优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验